Current progress and prospect of numerical simulation in powder compaction
YOU Meng-meng1,PAN Shi-yan1,2,SHEN Xiao-ping2,FAN Cang1
(1. School of Material Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China 2. Engineering Training Center,Nanjing University of Science and Technology,Nanjing 210094,China)
Abstract:Numerical simulation has become an effective tool in research and application of the powder compaction process. The mechanical modeling methods,the typical yield models and the material parameters (e.g.Young’s modulus,Poisson’s ratio and flow stress) used in the finite element simulation of powder compaction process were summarized. In addition,several softwares commonly used in this field,such as MSC.Marc,ABAQUS,DEFORM and ANSYS were compared in detail. Based on the current research situation,the future of simulation technique in powder metallurgy field was expected,and the primary development directions was pointed out,which were establishing more accurate mathematical models,enhancing 3D simulation and multi-fields coupling ability,applying software secondary development technology and improving numerical precision and practicality.
[1]李冰,王蕴,任连勇.有限元法”的发展与应用[J].甘肃科技, 2014, 30(1):70-71
[2]Kuhn H A, Downey C L.Deformation characteristics and plasticity theory of sintered powder materials[J].International Journal of Powder Metallurgy, 1971, 7(1):15-25
[3]Green R J.A plasticity theory for porous solids[J].International Journal of Mechanical Sciences, 1972, 14(4):215-224
[4]Shima S, Oyane M.Plasticity theory for porous metals[J].International Journal of Mechanical Sciences, 1976, 18(6):285-291
[5]Drucker D C, Prager W.Soil mechanics and plastic analysis of limit design[J]. Quart. Appl. Math, 1952, 10:157-165.
[6]Roscoe K H, Burland J B.On the generalized stress-strain behavior of ‘wet’ clay in engineering plasticity[M]. Cambridge: Cambridge University Press, 1968.
[7]Myeong S J, Jun H Y, Sung H R, et al.A unified model for compaction and sintering behavior of powder processing[J]. Finite Elements in Analysis and Design, 2012, 53:56-62.
[8]Lee D J, Jung J M, Latypov M I, et al.Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method[J].Computational Materials Science, 2015, 100(SIA):2-7
[9]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
[10]ZHOU Rui, ZHANG Lian-hong, HE Bai-yan, et al.Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker-Prager cap model[J].Transactions of Nonferrous Metals Society of China, 2013, 23(8):2374-2382
[11]汪俊,李从心,阮雪榆.一种改进的描述铁粉粉末压制过程的数学模型[J].机械科学与技术, 2000, 19(2):275-277
[12]周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广东广州:华南理工大学出版社,2011.
[13]SONG Yi, LI Yuan-yuan, ZHOU Zhao-yao, et al.Improved model and 3D simulation of densification process for iron powder[J].Transactions of Nonferrous Metals Society of China, 2010, 20(8):1470-1475
[14]赵伟斌.金属粉末温压成形的力学建模和数值模拟[D].广东广州:华南理工大学,2005.
[15]王德广.金属粉末高致密化成形及其数值模拟研究[D].安徽合肥:合肥工业大学,2010.
[16]杨晨晨.金属粉末的粘弹塑性本构方程的研究[D].湖南长沙:中南大学,2011.
[17]LIU Kai, SHI Yu-sheng, LI Chen-hui, et al.Indirect selective laser sintering of epoxy resin-Al2O3 ceramic powders combined with cold isostatic pressing[J].Ceramics International, 2014, 40(5):7099-7106
[18]夏余平,彭博,董俊辉,等.混合粉末温压成形致密化过程数值模拟[J].粉末冶金材料科学与工程, 2015, 20(6):852-859
[19]陈振华,陈鼎.现代粉末冶金原理[M].北京:化学工业出版社,2013.
[20]Khoei A R, Lewis R W.Finite element simulation for dynamic large elastoplastic deformation in metal powder forming[J].Finite Elements in Analysis and Design, 1998, 30(4):335-352
[21]Almanstoetter J.A modified Drucker-Prager cap model for finite element simulation of doped tungsten powder compaction[J]. International Journal of Refractory Metals & Hard Materials, 2015, 50:290-297.
[22]郭彪.铁基材料粉末锻造及致密化成形技术研究[D].四川成都:西南交通大学,2012.
[23]Sanchez L, Ouedraogo E, Federzoni L, et al.New viscoplastic model to simulate hot isostatic pressing[J].Powder Metallurgy, 2002, 45(4):329-334
[24]Valanis K C.A theory of viscoplacticity without a yield surface, PartⅠ.General theory[J]. Archives of Mechanics, 1971, 23:517-521.
[25]范镜泓,王建国.土的内时本构模型及其与经典塑性模型的关系[J].力学学报, 1989, 21(S1):56-61
[26]徐有娜,李建中.基于内蕴时间理论的网纹红土蠕变研究[J].勘察科学技术,2015(3):1-4.
[27]Jain S K.Material modeling by endochronic theory: the Virginia tech experience[J].International Journal for Computational Methods in Engineering Science and Mechanics, 2012, 13(5):329-333
[28]程远方.粉体致密化过程的离散元模拟[D].北京:北京科技大学,2000.
[29]Jerier J F, Hathong B, Richefeu V, et al.Study of cold powder compaction by using the discrete element method[J].Powder Technology, 2011, 208(2SI):537-541
[30]Harthong B, Imbault D, Doremus P.The study of relations between loading history and yield surfaces in powder materials using discrete finite element simulations[J].Journal of the Mechanics and Physics of Solids, 2012, 60(4):784-801
[31]Fleck N A, Otoyo H, Needleman A.Indentation of porous solids[J].International Journal of Solids and Structures, 1992, 29(13):1613-1636
[32]Khoei A R, Mofid M, Bakhshinai A.Modeling of powder compaction process using an endochronic plasticity model[J]. Journal of Materials Processing Technology, 2002, 130:175-180.
[33]Griffiths T J, Ghanizadeh A.Determination of elastic constants for porous sintered iron powder compacts[J].Powder Metallurgy, 1986, 29(2):129-133
[34]Zhadanovich G M.Theory of compacting of metal powders[M]. Translated from Teorizc Pressovaniya Metzllichaskikli Poroshkov by the Foreign Technology Division, Ohio:Wright-Patterson Air Force Base, 1969.
[35]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998.
[36]屠挺生,林大为.金属粉末烧结材料泊松比模型的探讨[J].金属成形工艺, 2001, 19(2):4-7