Abstract:Alnico alloy with spinodal decomposition was added into the Nd2Fe14B alloy to prepare the ribbons with nominal compositions of Nd2Fe14B+x% Alnico (x=0, 3, 5) by melt- spinning at a speed of 40 m/s. The magnetic properties and microstructure of the ribbons were investigated. It showed that the obtained ribbons consisted of hard Nd2Fe14B, soft Fe7Co3 magnetic phases, weak magnetic or nonmagnetic Al3Ni and Al13Co4 phases, and some amorphous phase. And the ribbons with x=3 got the best magnetic properties: Hc=665 kA/m,Br=0. 58 T,Br/Bs=0. 60.
收稿日期: 2017-03-20
出版日期: 2017-09-18
基金资助:国家自然科学基金面上项目;河北省自然科学基金
通讯作者:
孙继兵
E-mail: hbgdsjb@126.com
引用本文:
刘帅 秦晓宁 张策 杨薇 步绍静 孙继兵. Alnico合金添加量对Nd- Fe- B薄带磁体的微结构和磁性能的影响[J]. , 2017, 24(4): 17-22.
LIU Shuai, QIN Xiao- ning, ZHANG Ce, YANG Wei,BU Shao- jing, SUN Ji- bing. The effect of additive content of Alnico alloy on microstructure and magnetic properties of the Nd- Fe- B ribbons. , 2017, 24(4): 17-22.
[1] 徐兴国, 徐晖, 谭晓华, 等. 快淬速度对纳米晶复合Nd8.5Fe77.7Nb2Co5Ga0.6B6.2粘结永磁体温度系数的影响[J]. 稀有金属材料与工程, 2011, 40(8): 1450-1453.[2] 姜忠良, 森本耕一郎, 周宏文, 等. 热压/热变形Nd2Fel4B/α-Fe纳米双相永磁体的研究[J]. 粉末冶金技术, 2003, 21(2): 80-85.[3] 周寿增, 董清飞. 超强永磁体-稀土铁系永磁材料[M]. 北京: 冶金工业出版社, 1999, 442-450.[4] Kojima A, Makino A, Inoue A, et al. Effect of Co addition on the magnetic properties of nanocrystalline Fe-rich Fe-Nb-(Nd,Pr)-B alloys produced by crystallization of an amorphous phase[J]. Scripta Materialia, 2001, 44(8): 1383-1387.[5] Zhang S Y, Xu H, Ni S J, et al. Microstructure refinement and magnetic property enhancement for nanocomposite Nd2Fe14B/α-Fe alloys by Co and Zr additions[J]. Physica B Condensed, 2007, 393(1-2): 153-157.[6] Szymura S, Bala H, M Y, Rabinovich, et al. Properties of sintered Al substituted NdFeB magnets[J]. Modern Physics Letters B, 1998, 12(06n07): 257-263.[7] Ma Y G, Li R S, Yang Z, et al. Effects of additive elements (Cu, Zr, Al) on morphological and magnetic properties of NdFeB thin films with perpendicular magnetic anisotropy[J]. Materials Science and Engineering B, 2005, 117(3): 287-291.[8] Gabay A M, Zhang Y, C G, et al. Effect of Cu and Ga additions on the anisotropy of R2Fe14B/a-Fe nanocomposite die-upset magnets (R=Pr, Nd)[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(1): 244-251.[9] Fingers, R T, Rubertus, C S. Application of high temperature magnetic materials[J]. IEEE Transactions on Magnetics, 2000, 36, (5): 3373-3375.[10] Sun Y, Han G B, Liu M, et al. Intergranular phase dependence of anisotropy and coercivity in nanoscaled permanent magnets[J]. Materials Letters, 2007, 61(21): 4294-4296.[11] Inoue A. High strength bulk amorphous alloys with low critical cooling rates (overview)[J]. Materials Transactions, 1995, 36(7): 866-875.[12] Balamurugan B, Sellmyer D J, Hadjipanayis G C, et al. Prospects for nanoparticle-based permanent magnets[J]. Scripta Materialia, 2012, 67(6): 542-547. [13] Li H L, Lou L, Hou F C, et al. Simultaneously increasing the magnetization and coercivity of bulk nanocomposite magnets via severe plastic deformation[J]. Applied Physics Letters, 2013, 103(14): 2406. [14] Zhang Y M, Li W, Li H L, et al. Coercivity mechanism of α-Fe/Nd2Fe14B nanocomposite magnets with an intergranular amorphous phase[J]. Journal of Physics D Applied Physics, 2014, 47(1): 5002. [15] Wu Y Q, Ping D H, Hono K, et.al, Microstructural characterization of an α-Fe/Nd2Fe14B nanocomposite magnet with a remaining amorphous phase[J]. Journal of Applied Physics, 2000, 87(12): 8658-8865.[16] Li W, Li X. Enhancement of the maximum energy product of alpha-Fe/Nd2Fe14B nanocomposite magnets by interfacial modification[J]. Journal of Applied Physics, 2006, 99(12): 3588.