Abstract:Recent years, the application areas and requirements of permanent magnetic materials, as the main part of rare- earth application, are expending continuously, which impel some new developments and features in the research of this direction. As the extended application of Nd- Fe- B magnet in emerging fields like wind power generation, EV/HEV, energy- efficient appliances and so on, it promotes the research of Nd- Fe- B magnets in high magnetic properties and low costs. Considerable progress have been achieved in substituted technology for rare earth with high abundance, reduction technology of heavy rare earth, new hot pressed and deformed technology. Sm- Co magnets continue to play an irreplaceable role in defense industry, which have progress in the research about high magnetic energy product, high temperature resistance, low temperature coefficient and microstructure. As the raw material of bounded permanent magnets, the magnetic performance of rare- earth permanent magnetic powder directly determined the quality of bounded magnets. Research interests have been extensively attracted in the new mischmetal permanent magnetic powder, Sm- Fe- N powder, magnetocrystalline anisotropic powder and nano composite magnetic powder.
闫阿儒,刘壮,郭帅,陈仁杰. 稀土永磁材料的最新研究进展[J]. , 2017, 24(5): 5-16.
YAN A- ru, LIU Zhuang, GUO Shuai, CHEN Ren- jie. Recent research development of rare- earth permanent magnetic materials. , 2017, 24(5): 5-16.
[1] Herbst J F, R2fe14b Materials - Intrinsic-Properties and Technological Aspects[J], Rev Mod Phys, 1991, 63(4): 819-898.[2] Alam A, Khan M, McCallum R W, et al., Site-preference and valency for rare-earth sites in (R-Ce)(2)Fe14B magnets[J], Appl Phys Lett, 2013, 102(4): 042402.[3] Susner M A, Conner B S, Saparov B I, et al., Flux growth and characterization of Ce-substituted Nd2Fe14B single crystals[J], J Magn Magn Mater, 2017, 434: 1-9.[4] Zhu M G, Li W, Wang J D, et al., Influence of Ce Content on the Rectangularity of Demagnetization Curves and Magnetic Properties of Re-Fe-B Magnets Sintered by Double Main Phase Alloy Method[J], Ieee T Magn, 2014, 50(1): 1-4.[5] Zhang Y J, Ma T Y, Jin J Y, et al., Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets[J], Acta Mater, 2017, 128: 22-30.[6] Li Z, Liu W Q, Zha S S, et al., Effects of lanthanum substitution on microstructures and intrinsic magnetic properties of Nd-Fe-B alloy[J], J Rare Earth, 2015, 33(9): 961-964.[7] Li Z, Liu W Q, Zha S S, et al., Effects of CE substitution on the microstructures and intrinsic magnetic properties of Nd-Fe-B alloy[J], J Magn Magn Mater, 2015, 393: 551-554.[8] Zhang X F, Zhang L L, Li Z B, et al., Variation of coercivity with Ce content in (Pr,Nd,Ce)2Fe14B sintered magnets[J], AIP Advances, 2017, 7(5): 056228.[9] Yan C J, Guo S, Chen L, et al., Enhanced Temperature Stability of Coercivity in Sintered Permanent Magnet by Substitution of Ce for Didymium[J], Ieee T Magn, 2016, 52(5): 1-4.[10] Liu D, Zhao T Y, Li R, et al., Micromagnetic simulation of the influence of grain boundary on cerium substituted Nd-Fe-B magnets[J], AIP Advances, 2017, 7(5): 056201.[11] Fan X D, Guo S, Chen K, et al., Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets[J], J Magn Magn Mater, 2016, 419: 394-399.[12] Fan X, Chen K, Guo S, et al., Core-shell Y-substituted Nd-Ce-Fe-B sintered magnets with enhanced coercivity and good thermal stability[J], Appl Phys Lett, 2017, 110: 172405.[13] Fukada T, Matsuura M, Goto R, et al., Evaluation of the Microstructural Contribution to the Coercivity of Fine-Grained Nd-Fe-B Sintered Magnets[J], Mater Trans, 2012, 53(11): 1967-1971.[14] Sagawa M, Development and Prospect of the Nd-Fe-B Sintered Magnets[J], Proc. of 21st International Workshop on REPM, Bled, Slovenia, 2010, 183-186.[15] Nakamura M, Matsuura M, Tezuka N, et al., Effects of Hydrogenation Disproportionation Desorption Recombination Processing Parameters on the Particle Size of Ultrafine Jet-Milled Nd-Fe-B Powders[J], Mater Trans, 2015, 56(1): 129-134.[16] Nakamura M, Matsuura M, Tezuka N, et al., Effect of Annealing on Magnetic Properties of Ultrafine Jet-Milled Nd-Fe-B Powders[J], Mater Trans, 2014, 55(10): 1582-1586.[17] Zhang Y F, Liu T, Han J Z, et al., Preparation of Highly Textured Hydrogenation Disproportionation Desorption Recombination Powders for Nd-Fe-B Sintered Magnets[J], IEEE T Magn, 2015, 51(11): 2103104.[18] Ding G F, Guo S, Cai L W, et al., Study on Ultrafine-Grained Sintered Nd-Fe-B Magnets Produced From Jet-Milled HDDR Powders[J], IEEE T Magn, 2015, 51(11): 2102304.[19] Sepehri-Amin H, Ohkubo T, Shima T, et al., Grain boundary and interface chemistry of an Nd-Fe-B-based sintered magnet[J], Acta Mater, 2012, 60(3): 819-830.[20] Kohashi T, Motai K, Nishiuchi T, et al., Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy[J], Appl Phys Lett, 2014, 104(23): 2083.[21] Sasaki T T, Ohkubo T, Takada Y, et al., Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd-Fe-B sintered magnet[J], Scripta Mater, 2016, 113: 218-221.[22] Chen L, Cao X J, Guo S, et al., Coercivity Enhancement of Dy-Free Sintered Nd-Fe-B Magnets by Grain Refinement and Induction Heat Treatment[J], Ieee T Magn, 2015, 51(11): 2101403.[23] Cao X J, Chen L, Guo S, et al., Coercivity enhancement of sintered Nd-Fe-B magnets by efficiently diffusing DyF3 based on electrophoretic deposition[J], J Alloy Compd, 2015, 631: 315-320.[24] Cao X J, Chen L, Guo S, et al., Impact of TbF3 diffusion on coercivity and microstructure in sintered Nd-Fe-B magnets by electrophoretic deposition[J], Scripta Mater, 2016, 116: 40-43.[25] Cao X J, Chen L, Guo S, et al., Effect of rare earth content on TbF3 diffusion in sintered Nd-Fe-B magnets by electrophoretic deposition[J], Scripta Mater, 2017, 131: 24-28.[26] Kim T H, Lee S R, Yun S J, et al., Anisotropic diffusion mechanism in grain boundary diffusion processed Nd-Fe-B sintered magnet[J], Acta Mater, 2016, 112: 59-66.[27] Loewe K, Benke D, Kubel C, et al., Grain boundary diffusion of different rare earth elements in Nd-Fe-B sintered magnets by experiment and FEM simulation[J], Acta Mater, 2017, 124: 421-429.[28] Helbig T, Loewe K, Sawatzki S, et al., Experimental and computational analysis of magnetization reversal in (Nd,Dy)-Fe-B core shell sintered magnets[J], Acta Mater, 2017, 127: 498-504.[29] Tang X, Chen R J, Yin W Z, et al., Enhanced texture in die-upset nanocomposite magnets by Nd-Cu grain boundary diffusion[J], Appl Phys Lett, 2013, 102(7): 101.[30] Tang X, Chen R J, Yin W Z, et al., Impact of Nd-Cu diffusion on microstructure and coercivity in hot-pressed and die-upset nanocomposite magnets[J], Scripta Mater, 2014, 88: 49-52.[31] Tang X, Chen R J, Yin W Z, et al., Mechanism of texture enhancement in nanocomposite magnets during process of die upsetting coupled with Nd-Cu grain boundary diffusion[J], J Alloy Compd, 2015, 623: 386-392.[32] Tang X, Chen R J, Yin W Z, et al., The magnetization behavior and open recoil loops of hot-deformed Nd-Fe-B magnets infiltrated by low melting point PrNd-Cu alloys[J], Appl Phys Lett, 2015, 107(20): 064001.[33] Sawatzki S, Kubel C, Ener S, et al., Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics[J], Acta Mater, 2016, 115: 354-363.[34] Liu L H, Sepehri-Amin H, Ohkubo T, et al., Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process[J], J Alloy Compd, 2016, 666: 432-439.[35] Kim J Y, Kwon H W, Lee J G, et al., Improvement of Magnetic Performance of Nd-Fe-B-Type Die-Upset Magnet by RF3-Doping[J], Ieee T Magn, 2016, 52(7): 2100904 [36] Cha H R, Jeon K W, Yu J H, et al., Coercivity enhancement of hot-deformed Nd-Fe-B magnet by grain boundary diffusion process using the reaction of NdHX and Cu nanopowders[J], J Alloy Compd, 2017, 693: 744-748.[37] Wang Z X, Ju J Y, Wang J Z, et al., Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment[J], Sci Rep-Uk, 2016, 6: 38335.[38] Onal E, Lapovok R, Kishimoto H, et al., Effect of Processing Parameters on the Magnetic Properties and Macrotexture of a Nd13.5Fe73.8Co6.7B5.6Ga0.4 Alloy Processed by Equal Channel Angular Pressing With Back Pressure[J], Ieee T Magn, 2016, 52(7): 1-4.[39] Castle E, Grasso S, Reece M, et al., Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering[J], J Magn Magn Mater, 2016, 417: 279-283.[40] Ma Q, Yue M, Lv W C, et al., Effect of Deformation Temperature on Crystal Texture Formation in Hot Deformed Nanocrystalline SmCo5 Permanent Magnets[J], J Magn, 2016, 21(1): 25-28.[41] Wang R Q, Shen X, Liu Y, et al., Effects of Ga Addition on the Formability of Main Phase and Microstructure of Hot-Deformed Ce-Fe-B Magnets[J], Ieee T Magn, 2016, 52(9): 1-6.[42] 赖荣舜, 陈仁杰, 尹文宗, et al., 稀土永磁材料及其制备方法[P]. 中国专利:2016109012889, 2016-10-17, [43] Goll D, Stadelmaier H HKronmuller H, Samarium-cobalt 2:17 magnets: Analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets[J], Scripta Mater, 2010, 63(2): 243-245.[44] Xue Z Q, Liu L, Liu Z, et al., Mechanism of phase transformation in 2:17 type SmCo magnets investigated by phase stabilization[J], Scripta Mater, 2016, 113: 226-230.[45] Horiuchi Y, Hagiwara M, Endo M, et al., Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)Z sintered magnets[J], J Appl Phys, 2015, 117(17): 671-672.[46] Machida H, Fujiwara T, Kamada R, et al., The high squareness Sm-Co magnet having Hcb = 10.6 kOe at 150°C[J], AIP Advances, 2017, 7(5): 056223.[47] Sun W, Zhu M G, Fang Y K, et al., Magnetic properties and microstructures of high-performance Sm2Co17 based alloy[J], J Magn Magn Mater, 2015, 378: 214-216.[48] 李明, 高铁含量2:17 型SmCo 合金的组织演变与氢破技术研究[D], 宁波:中国科学院大学, 2016.[49] Zhang T L, Liu H Y, Liu J H, et al., 2:17-type SmCo quasi-single-crystal high temperature magnets[J], Appl Phys Lett, 2015, 106(16): 4671.[50] Yu N J, Zhu M G, Fang Y K, et al., The microstructure and magnetic characteristics of Sm(CobalFe0.1Cu0.09Zr0.03)7.24 high temperature permanent magnets[J], Scripta Mater, 2017, 132: 44-48.[51] Liu L, Liu Z, Li M, et al., Positive temperature coefficient of coercivity in Sm1-xDyx(Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets with spin-reorientation-transition cell boundary phases[J], Appl Phys Lett, 2015, 106(5): 821.[52] Horikawa T, Matsuura M, Sugimoto S, et al., Hydrogen Pressure and Temperature Dependence of the Disproportionated State and Magnetic Anisotropy in the d-HDDR Process of Nd-Fe-B-Ga-Nb Powders[J], IEEE T Magn, 2015, 51(11): 2103904.[53] Horikawa T, Matsuura M, Sugimoto S, et al., Crystallographic alignment in the recombination stage in d-HDDR process of Nd-Fe-B-Ga-Nb powders[J], AIP Advances, 2016, 6(5): 056017.[54] Sepehri-Amin H, Ohkubo T, Hono K, et al., Mechanism of the texture development in hydrogen-disproportionation-desorption-recombination (HDDR) processed Nd-Fe-B powders[J], Acta Mater, 2015, 85: 42-52.[55] 刘冬, 李野, 高俊彦, et al., 二次HDDR工艺制备的高矫顽力各向异性钕铁硼磁粉[J], 磁性材料及器件, 2016, 47(5): 32-36.[56] Zhang Y F, Han J Z, Liu S Q, et al., Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders[J], Scripta Mater, 2016, 110: 57-60.[57] Ma X B, Li L Z, Liu S Q, et al., Anisotropic Sm-Fe-N particles prepared by surfactant-assisted grinding method[J], J Alloy Compd, 2014, 612: 110-113.[58] Hirayama Y, Panda A K, Ohkubo T, et al., High coercivity Sm2Fe17N3 submicron size powder prepared by polymerized-complex and reduction-diffusion process[J], Scripta Mater, 2016, 120: 27-30.[59] Okada S, Suzuki K, Node E, et al., Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process[J], J Alloy Compd, 2017, 695: 1617-1623.[60] Li H, Li X H, Guo D F, et al., Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets[J], Nano Lett, 2016, 16(9): 5631-5638.[61] Tian H D, Zhang Y F, Han J Z, et al., Synergetic crystallization in a Nd2Fe14B/alpha-Fe nanocomposite under electron beam exposure conditions[J], Nanoscale, 2016, 8(42): 18221-18227.[62] Yu L Q, Zhang Y P, Yang Z, et al., Chemical synthesis of Nd2Fe14B/Fe3B nanocomposites[J], Nanoscale, 2016, 8(26): 12879-12882.[63] Ogawa D, Koike K, Mizukami S, et al., Negative exchange coupling in Nd2Fe14B(100)/alpha-Fe interface[J], Appl Phys Lett, 2015, 107(10): 102406.[64] Sepehri-Amin H, Ohkubo T, Nishiuchi T, et al., Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by the diffusion of Nd-Cu eutectic alloys[J], Scripta Mater, 2010, 63(11): 1124-1127.[65] Madugundo R, Salazar-Jaramillo D, Barandiaran J M, et al., High coercivity in rare-earth lean nanocomposite magnets by grain boundary infiltration[J], J Magn Magn Mater, 2016, 400: 300-303.[66] Li Z B, Shen B G, Zhang M, et al., Substitution of Ce for Nd in preparing R2Fe14B nanocrystalline magnets[J], J Alloy Compd, 2015, 628: 325-328.[67] Li Z B, Zhang M, Shen B G, et al., Variations of phase constitution and magnetic properties with Ce content in Ce-Fe-B permanent magnets[J], Mater Lett, 2016, 172: 102-104.[68] Pathak A K, Khan M, Gschneidner K A, et al., Cerium: An Unlikely Replacement of Dysprosium in High Performance Nd-Fe-B Permanent Magnets[J], Advanced Materials, 2015, 27(16): 2663-2667.[69] Zhang M, Li Z B, Shen B G, et al., Permanent magnetic properties of rapidly quenched (La,Ce)(2)Fe14B nanomaterials based on La-Ce mischmetal[J], J Alloy Compd, 2015, 651: 144-148.[70] Zhang M, Liu Y, Li Z B, et al., Magnetization process of nanocrystalline mischmetal-Fe-B ribbons[J], J Alloy Compd, 2016, 688: 1053-1057.[71] Li R, Shang R X, Xiong J F, et al., Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets[J], AIP Advances, 2017, 7: 056207.[72] Zhang X F Z W K, Li Y F, et al, Magnetic properties of melt-spun MM–Fe–B ribbons with different wheel speeds and mischmetal contents[J], Rare Metals, 2016, 1-5.[73] Zhou C, Tessema M, Meyer M S, et al., Synthesis of CeFe10.5Mo1.5 with ThMn12-type structure by melt spinning[J], J Magn Magn Mater, 2013, 336: 26-28.[74] Zhou C, Pinkerton F EHerbst J F, Magnetic properties of CeFe11-xCoxTi with ThMn12 structure[J], J Appl Phys, 2014, 115(17): 99-107.[75] Zhou C, Pinkerton F EHerbst J F, High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure[J], Scripta Mater, 2015, 95: 66-69.