Magnetocaloric effects of bonded compound of La0. 9Ce0. 1Fe11. 7-x MnxSi1. 3Hy(x=0. 21,0. 25)
LI Dao- qin 1,2, SONG Lin1, OU Zhi- qiang1, MING Ming1, WANG Ying1, HUANG Jiao- hong2
(1. Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Huhhot 010022,Nei Mongol,China 2. Baotou Research Institute of Rare Earth, Baotou 014030,Nei Mongol,China)
Abstract:Appropriate amount of raw materials were melted for several times in the high frequency suspension furnace, the obtained ingots were annealed in a high purity argon atmosphere at 1 363 K for 144 h before being quenched into water. Finally, after saturated hydrogen absorption and mixing of the two parents alloys, the composite has achieved. XRD results indicate that the parent compounds mainly consist of the NaZn13- type cubic structure phase with a space group of Fm- 3c. The M- T curves and magnetic entropy change curves show that the bonded composite has a larger temperature change interval than its parent compounds. The magnetic entropy change of the composite is much higher than that of Gd, the maximum value is about 6. 4 J/(kg·K) in a magnetic field change of 1. 5 T. And the larger relative cooling power (RCP(S)) of the composite is remained comparing with its parent compounds.
O.Tegus, E.Bruck, K. H. J. Buschow, F. R. de Boer. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature, 2002, 415(10): 150-152.
[2]
A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto. Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1-x)13 compounds [J]. Phys. Rev. B, 2002, 6501(1): 4410-4410.
[3]
H. Fengxia, S. Baogen, S. Jirong, C. Zhaohua, R. Guanghui and Z. Xixiang. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 [J]. Appl. Phys. Lett., 2001,78(23):3675-3677.
[4]
Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1-xSbx [J]. Appl. Phys. Lett., 2001, 79(20):3302-3304.
[5]
S.fujieda, A.fujita, K.fukamichi. Large magnetocaloric effect in La(FexSi1-x)13 itinerant-electron metamagnetic compounds [J] . Appl Phys Lett ,2002,81(7):1276-1278.
[6]
A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides [J]. Phys. Rev. B, 2003,67(10): 4416-4416.
[7]
X. Wei , H. Jiaohong , S. Naikun, L. Cuilan, O.Zhiqiang, S. Lin. Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe, Mn)11.7Si1.3H1.8 [J]. Journal of Alloys and Compounds, 2015, 635(0): 124–128.
[8]
Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C. Stability and magnetocaloric properties of sintered La(Fe, Mn, Si)13Hz alloy [J]. IEEE Transactions on Magnetics, 2011, 47(10): 3391-3394.
[9]
L. Zhiping, L. Shandong, L. Meimei, D. Jenq-Guh, P Ken, M. Xingyu. Magnetocaloric effect of La0.8Ce0.2Fe11.4?xMnxSi1.6 compounds [J]. Journal of Alloys and Compounds, 2010, 489 (1) : 1–3.
[10]
H. C. Xuan, D. H. Wang, C. L. Zhang, Z. D. Han, B. X. Gu, Y. W. Du. Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys [J]. Appl. Phys. Lett., 2008, 92 (10): 102503-102505.
[11]
K. A. Gschneidner, Jr. and V. K. Pecharsky. Magnetocaloric materials [J]. Annu. Rev. Mater. Res., 2000, 30(0): 387-429.