Abstract:The development of bionics surface on metal materials was summarized. Several common bionic structures were analyzed. The common fabrication methods of biomimetic surfaces for aluminum alloy were introduced. Present situation and future application of aluminum bionic surface were analyzed and prospected, respectively.
[1] Barcohen Y. Biomimetics: Nature Based Innovation[M]. CRC Press, Boca Raton, Florida, 2011.[2] Jabbari E, Kim D H, Khademhosseini A, et al. Handbook of Biomimetics and Bioinspiration[M]. World Scientific Publishing Co. Pte. Ltd, 2014.[3] Sun M H, Luo C X, Xu L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19) : 8978.[4] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 41(46) : 3240.[5] Feng L, Li S, Li Y, et al. Super-hydrophobic surface: from natural to artificial[J]. Advanced Materials, 2002, 14(24) : 1857.[6] Bixler G D, Bhushan B. Shark skin inspired low-drag microstructured surfaces in closed channel flow[J]. Journal of Colloid and Interface Science, 2013, 393(1) : 384.[7] Tuteja A, Choi W, Ma M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856) : 1618.[8] Bonderer L J, Studart A R, Gauckler L J. Bioinspired design and assembly of platelet reinforced polymer films[J]. Science, 2008, 319(5866) : 1069.[9] Erb R M, Sander J S, Grish R, et al. Self-shaping composites with programmable bioinspired microstructures[J]. Nature Communications, 2013, 4(2) : 1712.[10] Brebbia C A. Design and Nature V-Comparing Design in Nature with Science and Engineering[M]. WIT Press, Southampton, UK, 2010.[11] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1) :1.[12] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003, 22(12) : 1258.[13] Reif W F. Morphogenesis and function of the squamation in sharks[J]. Neues Jahrbuch für Geologie und Pal?ontologie - Abhandlungen, 1982, 164 : 172.[14] Ball P. Engineering shark Skin and Other solutions [J]. Nature, 1999, 400(6744) : 507.[15] Dean B, Bhushan B. Shark-skin Surfaces for Fluid-drag Reduction in Turbulent Flow: A Review[J]. Philosophical Transaction of the Royal Society A:Mathematical, Physical and Engineering Science, 2010, 368(1929) : 4775.[16] Rayleigh L. On reflection of vibration at the confines of two media between which the transition is gradual[J]. Proceedings of the London Mathematical Society, 1880, 11 : 51.[17] Xi J Q, Schubert M F, Kim Jong Kyu, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics, 2007, 1(3) : 176.[18] Xiu Y, Hess D W, Wong C P. Preparation of multi-functional silicon surface structures for solar cell applications[C]. Electronic Components and Technology Conference, 2008 : 2117.[19] Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets [J]. Journal of Fluid Mechanics, 1993, 255(10) : 503.[20] Lee S J, Jang Y G. Control of flow around a NACA 0012 air foil with a micro-riblet film[J]. Journal of Fluids and Structures, 2005, 20(5) : 659.[21] 李腾, 丁剑, 范同祥. 仿生纳米减反结构的制备[J]. 材料导报, 2012, 26(15) : 71.[22] Vukusic P, Sambles J R, Lawrence C R. Structurally assisted blackness in butterfly scales[J]. Proceedings Biological Sciences, 2004, Suppl 4(1542) : S237.[23] Zhao Q, Guo X, Fan T, et al. Art of blackness in butterfly wings as natural solar collector[J]. Soft Matter, 2011, 7(24) : 11433.[24] Wu W C, Wang X L, Wang D A. Alumina nanowire forests via unconventional anodization and super repellency plus low adhesion to diverse liquids [J]. Chemical Communications, 2009, 9(9) : 1043.[25] Qian B T, Shen Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20) , 9007.[26] Lee Y, Ju K Y, Lee J K. Stable biomimetic superhydrophobic surfaces fabricated by polymer replication method from hierarchically structured surfaces of Al templates[J]. Langmuir, 2010, 26(17) , 14103.[27] 李晶. 多元耦合仿生疏水金属表面制备原理与方法研究[D]. 吉林大学, 2012.[28] Cui G L, Xu W, Zhou X H, et al. Rose-like superhydrophobic surface based on conducting dmit salt[J]. Colloid Surfaces A: Physicochemical and Engineering Aspects, 2006, 272(1-2) : 63.[29] Bok H M, Kim S, Yoo S H, et al. Synthesis of perpendicular nanorod arrays with hierarchical architecture and water slipping superhydrophobic properties[J]. Langmuir, 2008, 24(8) : 4168.[30] Bok H M, Shin T Y, Park S. Designer binary nanostructures toward water slipping superhydrophobic surfaces[J]. Chemistry of Materials, 2008, 20(6) : 2247.[31] Qu M, Zhao G, Cao X, et al. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties[J]. Langmuir, 2008, 24(8) : 4185.[32] Guo Z G, Zhou F, Hao J C, et al. Biomimetic super-hydrophobic engineering materials[J]. Journal of The American Chemical Society, 2005, 127(45) : 15670.[33] Guo Z G,Zhou F,Hao J C. Effects of system parameters on making aluminum alloy lotus[J]. Journal of Colloid and interface science, 2006, 303(1) : 298.[34] Tadanaga T, Morinaga J, Matsuda A, et al. Superhydrophobic-superhydrophilic micro patterning on flowerlike alumina coating film by the sol-gel method[J]. Chemistry of Materials, 2000, 12(3) : 590. [35] Tadanaga K, Kitamuro K, Matsuda A, et al. Formation of superhydrophobic slumina coating films with high transparency on polymer substrates by the sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2003, 26(l-3) : 705.[36] Lee W, Jin M K, Yoo W C, et al. Nanostructured metal surfaces fabricated by a nonlithographic template method[J]. Langmuir, 2004, 20(2) : 287.[38] 吴英豪, 赵文杰, 王武荣,等. 铝合金表面微/纳米结构构筑研究进展[J]. 表面技术, 2017, 46(5) : 133.