1. Department of Physics, Beihang University, Beijing 100083, China 2. Beijing Key Laboratory for Magneto- Photoelectrical Composite and Interface Science, School of Mathematics and Physics,University of Science and Technology Beijing, Beijing 100083, China
Abstract:BiFeO3 microcubes were successfully synthesized via a controlled preprocessing process combined with subsequent hydrothermal reaction. The morphology features, crystal structure, and surface compositions of the BiFeO3 microcubes were characterized by scanning electron microscope, X- ray diffraction and X- ray photoemission spectra in detail. And time- dependent experiments were conducted to reveal the growth mechanism of the BiFeO3 microcubes. More attractively, the size of the cubes can be consecutively controlled from 8μm to 1. 5μm through adjusting the preprocessing temperature from 25℃ to 90℃. When employed as photocatalysts towards Rhodamine B degradation, the 1. 5μm samples showed the best catalytic activity.
[1] Feng Gao, Xinyi Chen, Kuibo Yin, Shuai Dong, Zhifeng Ren, Fang Yuan, Tao Yu, Zhigang ZouJun-Ming Liu. Visible-Light Photocatalytic Properties of Weak Magnetic Bifeo3 Nanoparticles[J]. Advanced Materials, 2007, 19:2889-2892[2] J. H. LuoP. A. Maggard. Hydrothermal Synthesis and Photocatalytic Activities of Srtio3-Coated Fe2o3 and Bifeo3[J]. Advanced Materials, 2006, 18:514-517[3] Yuan-Hua Lin, Qinghui Jiang, Yao Wang, Ce-Wen Nan, Lin ChenJian Yu. Enhancement of Ferromagnetic Properties in Bifeo3 Polycrystalline Ceramic by La Doping[J]. Applied Physics Letters, 2007, 90:172507[4] F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. ChenJ. M. Liu. Preparation and Photoabsorption Characterization of Bifeo3 Nanowires[J]. Applied Physics Letters, 2006, 89:102506[5] Upendra A. Joshi, Jum Suk Jang, Pramod H. BorseJae Sung Lee. Microwave Synthesis of Single-Crystalline Perovskite Bifeo(3) Nanocubes for Photoelectrode and Photocatalytic Applications[J]. Applied Physics Letters, 2008, 92:242106[6] Bavo De Witte, Herman Van Langenhove, Kristof Demeestere, Karen Saerens, Patrick De WispelaereJo Dewulf. Ciprofloxacin Ozonation in Hospital Wastewater Treatment Plant Effluent: Effect of Ph and H2o2[J]. Chemosphere, 2010, 78:1142-1147[7] Stuart W. Krasner, William A. Mitch, Daniel L. McCurry, David HaniganPaul Westerhoff. Formation, Precursors, Control, and Occurrence of Nitrosamines in Drinking Water: A Review[J]. Water Research, 2013, 47:4433-4450[8] T. Gao, Z. Chen, F. Niu, D. T. Zhou, Q. L. Huang, Y. X. Zhu, L. S. Qin, X. G. SunY. X. Huang. Shape-Controlled Preparation of Bismuth Ferrite by Hydrothermal Method and Their Visible-Light Degradation Properties[J]. Journal of Alloys and Compounds, 2015, 648:564-570[9] Raffainer, IIP. R. von Rohr. Promoted Wet Oxidation of the Azo Dye Orange Ii under Mild Conditions[J]. Industrial & Engineering Chemistry Research, 2001, 40:1083-1089[10] A. FujishimaK. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238:37-38[11] Steven N. FrankAllen J. Bard. Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at Titanium Dioxide Powder[J]. Journal of the American Chemical Society, 1977, 99(1):303-304[12] Steven N. Frank. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders.[J]. The journal of physical chemistry, 1977, 81:1484-1488[13] Baiju K. Vijayan, Nada M. Dimitrijevic, Jinsong WuKimberly A. Gray. The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes[J]. Journal of Physical Chemistry C, 2010, 114:21262-21269[14] R. Asahi, T. Morikawa, T. Ohwaki, K. AokiY. Taga. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293:269-271[15] Xin Shu, Jing HeDong Chen. Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles[J]. Industrial & Engineering Chemistry Research, 2008, 47:4750-4753[16] Yuning Huo, Miao Miao, Yi Zhang, Jian ZhuHexing Li. Aerosol-Spraying Preparation of a Mesoporous Hollow Spherical Bifeo3 Visible Photocatalyst with Enhanced Activity and Durability[J]. Chemical Communications, 2011, 47:2089-2091[17] Christian Reitz, Christian Suchomski, Christoph WeidmannTorsten Brezesinski. Block Copolymer-Templated Bifeo3 Nanoarchitectures Composed of Phase-Pure Crystallites Intermingled with a Continuous Mesoporosity: Effective Visible-Light Photocatalysts?[J]. Nano Research, 2011, 4:414-424[18] F. Niu, D. Chen, L. S. Qin, T. Gao, N. Zhang, S. Wang, Z. Chen, J. Y. Wang, X. G. SunY. X. Huang. Synthesis of Pt/Bifeo3 Heterostructured Photocatalysts for Highly Efficient Visible-Light Photocatalytic Performances[J]. Solar Energy Materials and Solar Cells, 2015, 143:386-396[19] W. Eerenstein, N. D. MathurJ. F. Scott. Multiferroic and Magnetoelectric Materials[J]. Nature, 2006, 442:759-765[20] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. WuttigR. Ramesh. Epitaxial Bifeo3 Multiferroic Thin Film Heterostructures[J]. Science, 2003, 299:1719-1722[21] G. CatalanJ. F. Scott. Physics and Applications of Bismuth Ferrite[J]. Advanced Materials, 2009, 21:2463-2485[22] S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, S. V. KalininB. H. Park. Large Resistive Switching in Ferroelectric Bifeo3 Nano-Island Based Switchable Diodes[J]. Advanced Materials, 2013, 25:2339-2343[23] Z. T. Hu, Z. Chen, R. Goei, W. Y. WuT. T. Lim. Magnetically Recyclable Bi/Fe-Based Hierarchical Nanostructures Via Self-Assembly for Environmental Decontamination[J]. Nanoscale, 2016, 8:12736-12746[24] M. M. Kumar, V. R. Palkar, K. SrinivasS. V. Suryanarayana. Ferroelectricity in a Pure Bifeo3 Ceramic[J]. Applied Physics Letters, 2000, 76:2764-2766[25] Muhammad Humayun, Amir Zada, Zhijun Li, Mingzheng Xie, Xuliang Zhang, Yang Qu, Fazal RaziqLiqiang Jing. Enhanced Visible-Light Activities of Porous Bifeo3 by Coupling with Nanocrystalline Tio2 and Mechanism[J]. Applied Catalysis B-Environmental, 2016, 180:219-226[26] A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. CuiA. Burger. Magnetic and Electrical Properties of Single-Phase Multiferroic Bifeo3[J]. Journal of Applied Physics, 2005, 97:093903[27] De-Chang Jia, Jia-Huan Xu, Hua Ke, Wen WangYu Zhou. Structure and Multiferroic Properties of Bifeo3 Powders[J]. Journal of the European Ceramic Society, 2009, 29:3099-3103[28] S. H. Xie, J. Y. Li, Roger Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. LanY. Qiao. Nanocrystalline Multiferroic Bifeo3 Ultrafine Fibers by Sol-Gel Based Electrospinning[J]. Applied Physics Letters, 2008, 93:222904[29] C. Chen, J. R. Cheng, S. W. Yu, L. J. CheZ. Y. Meng. Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites[J]. Journal of Crystal Growth, 2006, 291:135-139[30] Y. G. SunY. N. Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298:2176-2179[31] X. Wang, J. Zhuang, Q. PengY. D. Li. A General Strategy for Nanocrystal Synthesis[J]. Nature, 2005, 437:121-124[32] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. BangerA. F. Hepp. Synthesis and Characterization of Colloidal Cuins2 Nanoparticles from a Molecular Single-Source Precursor[J]. Journal of Physical Chemistry B, 2004, 108:12429-12435[33] H. Chang, F. Kosari, G. Andreadakis, M. A. Alam, G. VasmatzisR. Bashir. DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels[J]. Nano Letters, 2004, 4:1551-1556[34] Y. CuiC. M. Lieber. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks[J]. Science, 2001, 291:851-853[35] Di ChenJinhua Ye. Hierarchical Wo3 Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties[J]. Advanced Functional Materials, 2008, 18:1922-1928[36] T. J. Park, Y. B. MaoS. S. Wong. Synthesis and Characterization of Multiferroic Bifeo3 Nanotubes[J]. Chemical Communications, 2004, 2708-2709[37] S. Li, Y. H. Lin, B. P. Zhang, Y. WangC. W. Nan. Controlled Fabrication of Bifeo3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors[J]. Journal of Physical Chemistry C, 2010, 114:2903-2908[38] M. Escobar Castillo, V. V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. WendeD. C. Lupascu. Effect of Particle Size on Ferroelectric and Magnetic Properties of Bifeo3 Nanopowders[J]. Nanotechnology, 2013, 24:355701[39] Xiaofei Bai, Jie Wei, Bobo Tian, Yang Liu, Thomas Reiss, Nicolas Guiblin, Pascale Gemeiner, Brahim DkhilIngrid C. Infante. Size Effect on Optical and Photocatalytic Properties in Bifeo3 Nanoparticles[J]. Journal of Physical Chemistry C, 2016, 120:3595-3601[40] D. Chen, F. Niu, L. S. Qin, S. Wang, N. ZhangY. X. Huang. Defective Bifeo3 with Surface Oxygen Vacancies: Facile Synthesis and Mechanism Insight into Photocatalytic Performance[J]. Solar Energy Materials and Solar Cells, 2017, 171:24-32[41] Rajasree Das, Tanushree SarkarK. Mandal. Multiferroic Properties of Ba2+ and Gd3+ Co-Doped Bismuth Ferrite: Magnetic, Ferroelectric and Impedance Spectroscopic Analysis[J]. Journal of Physics D-Applied Physics, 2012, 45:455002[42] Ruixin ZhouMarcelo I. Guzman. Photocatalytic Reduction of Fumarate to Succinate on Zns Mineral Surfaces[J]. Journal of Physical Chemistry C, 2016, 120:7349-7357[43] Ruixin ZhouMarcelo I. Guzman. Co2 Reduction under Periodic Illumination of Zns[J]. Journal of Physical Chemistry C, 2014, 118:11649-11656[44] Lei Ge, Changcun HanJing Liu. Novel Visible Light-Induced G-C3n4/Bi2wo6 Composite Photocatalysts for Efficient Degradation of Methyl Orange[J]. Applied Catalysis B-Environmental, 2011, 108:100-107[45] Zhenwei Tong, Dong Yang, Tianxiong Xiao, Yao TianZhongyi Jiang. Biomimetic Fabrication of G-C3n4/Tio2 Nanosheets with Enhanced Photocatalytic Activity toward Organic Pollutant Degradation[J]. Chemical Engineering Journal, 2015, 260:117-125