Abstract:The R-Y-Ni based A5B19-type R0.45Y0.55Ni3.5Mn0.2Al0.1(R=Y,La,Pr,Nd,Sm) alloys were prepared by vacuum arc melting and followed by annealing treatment. The effects of rare earth element R on the microstructure, hydrogen storage and electrochemical properties of the alloys were investigated systematically. XRD and SEM-EDS analysis showed that the annealed alloys mainly composed of Ce5Co7-type phases, Ce2Ni7-type and CaCu5-type phases. XRD whole pattern fitting showed that the abundance of main phase Ce5Co19-type phase becomes smaller as the radius of R atom becomes larger, the lattice constants a, c and cell volume V of the Ce5Co19-type main phases decreased in sequence with the decreasing radius of R atoms. The electrochemical results showed that the alloy electrode has the highest discharge capacity when the substitute element is La, the R=Nd alloys exhibited the best cyclic stability (S100=90.0%), the R=Pr alloys exhibited the best high rate discharge performance (HRD900=86.7%). The HRD900 and D0 of all alloy electrodes show a good corresponding relationship.
So High rate discharge ability of the electrode was controlled by the diffusion of hydrogen atoms in the alloy.
[1]温秋红.我国电池企业在新能源汽车行业中的竞争态势[J].电源技术, 2014,( 6) : 1190-1192.[2]T.Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14, J. Alloys Compd., 311 (2000) L5-L7.[3]高金良.稀土系镍氢电池负极材料的开发和市场[J].稀土,1995,16( 1) : 63-67.[4]朱敏, 先进储氢材料导论, 科学出版社, 2015.[5]王浩, 罗永春, 邓安强, 等. La-Mg-Ni系A2B7型储氢合金表面包覆NAFION及其电化学性能研究. 金属功能材料, 2018, 25(1):23-29.[6]李倩. 真空感应熔炼制备La-Mg-Ni型储氢合金工艺研究. 金属功能材料, 2014, 21(3):34-36.[7]H. Hayakawa, E. Akiba, M. Gotoh, T. Kohno, Crystal Structures of La–Mg–Nix (x=3–4) System Hydrogen Storage Alloys, Materials Transactions, 46 (2005) 1393-1401.[8]R.V. Denys, A.B. Riabov, Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7–H(D)2 system, J. Solid State Chem., 181 (2008) 812-821.[9]Q. Zhang, B. Zhao, M. Fang, C. Liu, Q. Hu, F. Fang, D. Sun, L. Ouyang, M. Zhu, (Nd1.5Mg0.5)Ni7-based compounds: structural and hydrogen storage properties, Inorg. Chem., 51 (2012) 2976-2983.[10]Y. Liu, H. Yuan, M. Guo, L. Jiang, Effect of Y element on cyclic stability of A2B7-type La–Y–Ni-based hydrogen storage alloy, Int. J. Hydrogen Energy, 44 (2019) 22064-22073.[11]Y. Shi, H. Leng, L. Wei, S. Chen, Q. Li, The microstructure and electrochemical properties of Mn-doped La-Y-Ni-based metal-hydride electrode materials, Electrochim. Acta, 296 (2019) 18-26.[12]W. Xiong, H. Yan, L. Wang, V. Verbetsky, X. Zhao, S. Mitrokhin, B. Li, J. Li, Y. Wang, Characteristics of A2B7-type La-Y-Ni-based hydrogen storage alloys modified by partially substituting Ni with Mn, Int. J. Hydrogen Energy, 42 (2017) 10131-10141.[13]W. Xiong, H. Yan, L. Wang, X. Zhao, J. Li, B. Li, Y. Wang, Effects of annealing temperature on the structure and properties of the LaY2Ni10Mn0.5 hydrogen storage alloy, Int. J. Hydrogen Energy, 42 (2017) 15319-15327.[14]王杰. 镁合金熔体负压净化及其对性能的影响. 2011.[15]R. A. Young, The Rietveld Method, [M].Oxford University Press, 1996:1[16]Yan H Z, Xiong W, Wang L. Investigations on AB(3)-, A(2)B(7)- and A(5)B(19)-type La-Y-Ni system hydrogen storage alloys. International Journal of Hydrogen Energy, 2017, 42(4):2257-2264.[17]Zhang J, Zhou G, Chen G, et al. Relevance of hydrogen storage properties of ANi3 intermetallics (A= La, Ce, Y) to the ANi2 subunits in their crystal structures . Acta Materialia, 2008, 56(19): 5388-5394.[18]Subramanian P R, Smith J F. Thermodynamics of formation of Y-Ni alloys . Metallurgical Transactions B, 1985, 16(3): 577-584.[19]Li J, Luo Y C, Zhang G Q, et al. Effect of mixed rare earth elements on structural and electrochemical properties of A2B7-type hydrogen storage alloys. Chinese Journal of Inorganic Chemistry, 2014, 30(10):2270-2278.[20]杨洋. 稀土和热处理对超点阵结构La-Y-Ni系A5B19型合金储氢和电化学性能的影响[D].兰州理工大学, 2020.[21]贾志华, 王玉平.储氢合金吸氢量测试方法.金属功能材料, 2004(05):28-31.[22]Liu J, Li Y, Han D, et al. Electrochemical performance and capacity degradation mechanism of single-phase La-Mg-Ni-based hydrogen storage alloys. Journal of power sources, 2015, 300(DEC.30):77-86.[23]K.H.J. Buschow, A.S. Van Der Goot, The crystal structure of rare-earth nickel compounds of the type R2Ni7, J. Less Common Met., 22 (1970) 419-428.[24]V. Charbonnier, J. Zhang, J. Monnier, L. Goubault, P. Bernard, C. Magén, V. Serin, M. Latroche, Structural and Hydrogen Storage Properties of Y2Ni7 Deuterides Studied by Neutron Powder Diffraction, J. Phys. Chem. C, 119 (2015) 12218-12225.[25]H. Yan, W. Xiong, L. Wang, B. Li, J. Li, X. Zhao, Investigations on AB3-, A2B7- and A5B19-type La-Y-Ni system hydrogen storage alloys, Int. J. Hydrogen Energy, 42 (2017) 2257-2264.[26]L. Zhang, Z. Jia, W. Wang, I.A. Rodríguez-Pérez, Y. Zhao, Y. Li, X. Zhao, L. Wang, S. Han, A new choice for the anode of nickel metal hydride batteries with long cycling life: A Ce2Ni7-type single-phase Nd0.80Mg0.20Ni3.58 hydrogen storage alloy, J. Power Sources, 433 (2019).[27]C. Tan, L. Ouyang, M. Chen, W. Jiang, D. Min, C. Liao, M. Zhu, Effect of Sm on performance of Pr/Nd/Mg-free and low-cobalt AB4.6 alloys in nickel-metal hydride battery electrode, J. Alloys Compd., 829 (2020) 154530.[28]N.S. Nazer, R.V. Denys, V.A. Yartys, W.-K. Hu, M. Latroche, F. Cuevas, B.C. Hauback, P.F. Henry, L. Arnberg, In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode, J. Power Sources, 343 (2017) 502-512.