Research progress of rare earth-doped ZnVO based varistor ceramics
YAO Yuan-lin1,2, LI Hui-qin1, HAN Xiao-xing3
1. College of Material and Metallurgy,Inner Mongolia University of Science & Technology,Baotou 014010,Nei Mongol, China 2. Smelting Branch of Northern Rare Earth,Baotou 014010,Nei Mongol, China 3. College of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology,Baotou 014010,Nei Mongol, China
Abstract:In view of the modern material analysis method, the research reviewes development of rare earth-doped ZnVO based pressure sensitive ceramics and status of the optimization of the second phase and microstructure, from the phase, microstructure and electrical properties of appearance. It analysed effect of rare earth doping on the formation of grain and the improvement of the electrical properties of ZnO grains. At last, the development direction of this field is prospected.
姚园林, 李慧琴, 韩晓星. 稀土掺杂ZnVO基压敏陶瓷的研究进展[J]. , 2016, 23(4): 53-59.
YAO Yuan-lin,, LI Hui-qin, HAN Xiao-xing. Research progress of rare earth-doped ZnVO based varistor ceramics. , 2016, 23(4): 53-59.
[1] Gupta T K. Application of Zinc Oxide Varistors[J]. Journal of the American Ceramic Society, 1990,73(7):1817-1840. [2] Clarke D R. Varistor Ceramics[J]. Journal of the American Ceramic Society, 1999,82(3):485-502. [3] Peiteado M, de la Rubia M A, Velasco M J, et al. Bi2O3 vaporization from ZnO-based varistors[J]. Journal of the European Ceramic Society, 2005,25(9):1675-1680. [4] Kobayashi K, Wada O, Kobayashi M, et al. Continuous Existence of Bismuth at Grain Boundaries of Zinc Oxide Varistor without Intergranular Phase[J]. Journal of the American Ceramic Society, 1998,81(8):2071-2076. [5] Mukae K, Tsuda K, Nagasawa I. Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics[J]. Jpn. J. Appl. Phys, 1977,16(8):1361-1368. [6] Wang M, Li G, Yao C, et al. Sintering behavior of Zn-Pr-Co-Mn-O varistor ceramics[J]. Ceramics International, 2011,37(7):2897-2900. [7] Nahm C W. Effect of La2O3 addition on microstructure and electrical properties of ZnO-Pr6O11-based varistor ceramics[J]. Journal of Materials Science: Materials in Electronics, 2005,16(6):345-349. [8] Nahm C W. Effect of sintering temperature electrical properties of ZNR doped with Pr-Co-Cr-La[J]. Ceramics International, 2008,34(6):1521-1525. [9] Peng Z, Fu X, Zang Y, et al. Influence of Fe2O3 doping on microstructural and electrical properties of ZnO–Pr6O11 based varistor ceramic materials[J]. Journal of Alloys and Compounds, 2010,508(2):494-499.[10] Tsai J, Wu T. Microstructure and nonohmic properties of binary ZnO-V2O5 ceramics sintered at 900 °C[J]. Materials Letters, 1996,26(3):199-203.[11] Hng H H, Chan P L. Cr2O3 doping in ZnO-0.5 mol% V2O5 varistor ceramics[J]. Ceramics International, 2009,35(1):409-413.[12] Nahm C W. Effect of MnO2 addition on microstructure and electrical properties of ZnO-V2O5-based varistor ceramics[J]. Ceramics International, 2009,35(2):541-546.[13] Nahm C. Effect of dopant (Al, Nb, Bi, La) on varistor properties of ZnO-V2O5-MnO2-Co3O4-Dy2O3 ceramics[J]. Ceramics International, 2010,36(3):1109-1115.[14] Nahm C. Effect of sintering temperature on microstructure and electrical properties of ZVMCDN ceramics[J]. Materials Letters, 2010,64(7):830-832.[15] Hng H H, Knowles K M. Characterisation of Zn3(VO4)2 phases in V2O5-doped ZnO varistors[J]. Journal of the European Ceramic Society, 1999,19(6-7):721-726.[16] Nahm C W. Er2O3 Doping Effect on Electrical Properties of ZnO-V2O5-MnO2-Nb2O5 Varistor Ceramics[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011,94(10):3227-3229.[17] Nahm C. Major effects on varistor properties of ZnO-V2O5-MnO2-Nb2O5-Er2O3 ceramics with sintering changes[J]. Ceramics International, 2011.[18] Barsoum M W, Elkind A, Selim F A. Low breakdown voltage varistors by grain boundary diffusion of molten Bi2O3 in ZnO[J]. Journal of the American Ceramic Society, 1996,79(4):962-966.[19] Daneu N, Re V C Nik A, Bernik S, et al. Microstructural Development in SnO2-Doped ZnO--Bi2O3 Ceramics[J]. Journal of the American Ceramic Society, 2000,83(12):3165-3171.[20] Hng H H, Chan P L. Cr2O3 doping in ZnO-0.5 mol% V2O5 varistor ceramics[J]. CERAMICS INTERNATIONAL, 2009,35(1):409-413.[21] Lao Y, Kuo S, Tuan W. Effect of Bi2O3 and Sb2O3 on the grain size distribution of ZnO[J]. Journal of Electroceramics, 2007(2-3).[22] Daneu N, Re V C Nik A, Bernik S. Grain Growth Control in Sb2O3-Doped Zinc Oxide[J]. Journal of the American Ceramic Society, 2003,86(8):1379-1384.[23] Ming Z, Yu S, Sheng T C. Grain growth of ZnO-V2O5 based varistor ceramics with different antimony dopants[J]. Journal of the European Ceramic Society, 2011,31(13):2331-2337.[24] Bernik S, Daneu N, Recnik A. Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics[J]. Journal of the European Ceramic Society, 2004,24(15-16):3703-3708.[25] Nahm C. Preparation and varistor properties of new quaternary Zn-V-Mn-(La, Dy) ceramics[J]. Ceramics International, 2009,35(8):3435-3440.[26] Pianaro S A, Pereira E C, Bulhoes L, et al. Effect of Cr2O3 on the electrical properties of multicomponent ZnO varistors at the pre-breakdown region[J]. Journal of materials science, 1995,30(1):133-141.[27] Sato Y, Yodogawa M, Yamamoto T, et al. Dopant-segregation-controlled ZnO single-grain-boundary varistors[J]. Applied Physics Letters, 2005,86(1215-1221).[28] Hng H H, Tse K Y. Effects of MgO doping in ZnO-0.5 mol% V2O5 varistors[J]. Ceramics International, 2008,34(5):1153-1157.[29] Pfeiffer H, Knowles K M. Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO-rich MnO2-V2O5-ZnO varistors[J]. Journal of the European Ceramic Society, 2004,24(6):1199-1203.[30] Chen C. Effect of dopant valence state of Mn-ions on the microstructures and nonlinear properties of microwave sintered ZnO-V2O5 Varistors[J]. Journal of Materials Science, 2003,38(5):1033.[31] Nahm C. Improvement of electrical properties of V2O5 modified ZnO ceramics by Mn-doping for varistor applications[J]. Journal of Materials Science, 2008,19:1023-1029.[32] MANTAS P Q, SENOS A M R, BAPTISTA J L. Varistor-capacitor characteristics of ZnO ceramics[J]. JOURNAL OF MATERIALS SCIENCE, 1986,21:679-686.[33] Fujitsu S, Toyoda H, Yanagida H. Origin of ZnO varistor[J]. Journal of the American Ceramic Society, 1987,70(4):71.[34] Han J, Senos A M R, Mantas P Q. Varistor behaviour of Mn-doped ZnO ceramics[J]. Journal of the European Ceramic Society, 2002,22(9-10):1653-1660.[35] Bueno P R, Leite E R, Oliveira M M, et al. Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism[J]. Applied Physics Letters, 2001,79:48.[36] Nahm C. Microstructure and electrical properties of Dy2O3-doped ZnO-Pr6O11-based varistor ceramics[J]. Materials Letters, 2004,58(17-18):2252-2255.[37] Nahm C W, Shin B C, Min B H. Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics[J]. Materials chemistry and physics, 2003,82(1):157-164.[38] Choon-Woo N. The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors[J]. Materials Science and Engineering: B, 2007,136(2-3):134-139.[39] Nahm C. The electrical properties and d.c. degradation characteristics of Dy2O3 doped Pr6O11-based ZnO varistors[J]. Journal of the European Ceramic Society, 2001,21(4):545-553.