Abstract:Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed.
丁辉,王鸣,杜兆富,赵栋梁. 二氧化钛纳米管阵列光阳极的几何参数对染料敏化太阳能电池性能的影响[J]. , 2014, 21(2): 41-51.
DING Hui, WANG Ming, DU Zhao-fu, ZHAO Dong-liang. Effect of the Geometry of the Titanium Dioxide Nanotube Arrays on the Performance of Dye-Sensitized Solar Cells. , 2014, 21(2): 41-51.
J. Burschka, N. Pellet, Soo-Jin Moon, R. Humphry-Baker, P. Gao, Mohammad K. Nazeeruddin and M. Gr?tzel. Nature 499, 316(2013).
[5]
J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B 105, 11194 (2001).
[9]
I. C. Flores, J. N. de Freitas, C. Longo, M. De Paoli, H. Winnischofer, and A. F. Nogueira, J. Photochem. Photobiol. A: Chem. 189, 153 (2007).
[13]
S. Farsinezhad, A. Mohammadpour, A. N. Dalrymple, J. Geisinger, P. Kar, M. J. Brett, et al. J. Nanosci. Nanotechno. 13(4), 2885 (2013).
[14]
M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc. 126, 14943 (2004).
[18]
J. Jiu, S. Isoda, F. Wang, and M. Adachi, J. Phys. Chem. B 110, 2087 (2006).
[22]
M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Griems, J. Phys. Chem. B 110, 16179 (2006).
[2]
M. Gr?tzel, Inorg. Chem. 44, 6841 (2005).
[3]
M. Gr?tzel, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145 (2003).
[8]
Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, and S. Yanagida, Phys. Chem. Chem. Phys. 7, 4157 (2005).
[11]
S. H. Lee, S. Y. Chae, Y. J. Hwang, K-K Koo, and O-S Joo. Applied Physics A. 112(3),733 (2013).
[12]
Jen, H. P., M. H. Lin, L. L. Li, H. P. Wu, W. K. Huang, P. J. Cheng and E. W. Diau. ACS Appl. Mater. Interfaces. 5, 10098 (2013).
[17]
M. Song, Y. Ahn, S. Jo, D. Kim, and J.-P. Ahn, Appl. Phys. Lett. 87, 113113 (2005).
[20]
F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, and B. Zou, Mater. Lett. 61, 2000 (2007).
[21]
G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes, Adv. Funct. Mater. 15, 1291 (2005).
[23]
K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Griems, Nanotechnology 18, 065707 (2007).
[26]
J. M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005).
[29]
P. Xiao, B. B. Garcia, Q. Guo, D. Liu, and G. Cao, Electrochem. Commun. 9, 2441 (2007).
[30]
S. Bauer, S. Kleber, and P. Schmuki, Electrochem. Commun. 8, 1321 (2006).
[32]
Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res. 20, 230 (2005).
[35]
Qi, Fang Yi, Qi Yu Huang, Fang Jiao, Yi Zhou Zheng, Yu Chou Gan and Jing Xie. Adv. Mater. Res. 631, 524 (2013).
[38]
J. M. Macak, H. Hildebrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem. 621, 254 (2008).
[39]
H. Tsuchiya, J. M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, Corr. Sci. 47, 3324 (2005).
[41]
N. N. Bwana, Curr. Appl. Phys. 9, 104 (2009).
[44]
A. J. Nozik, Ann. Rev. Phys. Chem. 29, 189 (1978).
[47]
M. Gr?tzel, J. Photochem. Photobiol. A: Chem. 3, 164 (2004).
[48]
B. O’Regan, J. Moser, M. Anderson, and M. Gr?tzel, J. Phys. Chem. 94, 8720 (1990).
[50]
H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, J. Appl. Phys. 75, 2042 (1994).
[53]
A. C. Arango, S. A. Carter, and P. J. Brock, Appl. Phys. Lett. 74, 1698 (1999).
[56]
T. Watanabe, A. Fujishima, O. Tatsuoki, and K. Honda, Bul. Chem. Soc. Japan 49, 8 (1976).
[57]
D. Fitzmaurice, Sol. Energy Mater. Sol. Cells 32, 289 (1994).
[59]
E. Hendry, M. Koeberg, B. O’Regan, and M. Bonn, Nano Lett. 6, 755 (2006).
[62]
N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B 104, 3930 (2000).
[65]
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006).
[6]
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[15]
B. Tan and Y. Wu, J. Phys. Chem. B 110, 15932 (2006).
[24]
H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Griems, J. Phys. Chem. C 111, 7235 (2007).
[33]
Wang, Ke, Di Yang and Wen-zhong Wang. J Mater. Sci.-Mater. El. 24, 443 (2012).
[42]
M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Griems, J. Phys. D: Appl. Phys. 39, 2498 (2006).
[51]
M. Dolata, P. Kedzierzawski, and J. Augustynski, Electrochim. Acta 41, 1287 (1996).
[60]
V. Kytin, Th. Dittrich, J. Bisquert, E. A. Lebedev, and F. Koch, Phys. Rev. B 68, 195308 (2003).
[66]
M. Gr?tzel, Chem. Lett. 34, 8 (2005).
[68]
D. Kim, A. Ghicov, and P. Schmuki, Electrochem. Commun. 10, 1835 (2008).
[69]
J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).
[71]
G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006).
[74]
K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, Nano Lett. 7, 3739 (2007).
[75]
D. Kim, A. Ghicov, S. P. Albu, and P. Schmuki, J. Am. Chem. Soc. 130, 16454 (2008).
[1]
B. O’Regan and M. Gr?tzel, Nature 353, 737 (1991).
[7]
J. M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki, Electrochem. Commun. 7, 1133 (2005).
[10]
M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, J. Electrochem. Soc. 150, G488 (2003).
[16]
X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Nano Lett. 8, 3781 (2008).
[19]
S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, Adv. Mater. 20, 54 (2008).
[25]
J. M. Macak and P. Schmuki, Electrochim. Acta 52, 1258 (2006).
[28]
K. S. Raja, T. Gandhi, and M. Misra, Electrochem. Commun. 9, 1069 (2007).
[34]
Wang, Hong, Hongyi Li, Jinshu Wang, Junshu Wu and Man Liu. J. Nanosci. Nanotechno. 13, 4183 (2013).
[37]
Long, Dong Ping, Jian Rong Xue and Zhi Xin Yan. Adv. Mater. Res. 842,247 (2013).
[43]
M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, and C. A. Griems, Nanotechnology 17, 1446 (2006).
[46]
M. Gr?tzel, Nature 414, 338 (2001).
[52]
D. Duonghong, J. Ramsden, and M. Gr?tzel, J. Am. Chem. Soc. 104, 2977 (1982).
[55]
B. Kraeutler and A. J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).
[61]
H. G. Agrell, G. Boschloo, and A. Hagfeldt, J. Phys. Chem. B 108, 12388 (2004).
[64]
E. Enache-Pommer, J. E. Boercker, and E. S. Aydil, Appl. Phys. Lett. 91, 123116 (2007).
[70]
R. Hahn, T. Stergiopoulus, J. M. Macak, D. Tsoukleris, A. G. Kontos, S. P. Albu, D. Kim, A. Ghicov, J. Kunze, P. Falaras, and P. Schmuki, Phys. Stat. Sol. (RRL) 1, 135 (2007).
[73]
J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).
[27]
L. V. Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, J. Electrochem. Soc. 152, B405 (2005).