Abstract:Magnetic metal nanoparticles have important applications in high density magnetic storage, catalysis and biomedicine, attracting great research interest. In addition, exchange- coupled nanocomposites which combine the high saturation magnetization of a soft phase with the high coercivity of a hard phase, could obtain the magnetic materials with enhanced energy products, providing a possibility for the design and preparation of new generation of permanent magnetic materials. Compared with physical methods, chemical synthesis possesses characteristic flexibilities on materials design, sizes and morphologies, and further affect magnetic properties of the materials, becoming the common methods of preparation for nanoparticles. This review introduces some representative works on the single- phase iron, cobalt, nickel and its alloy metal nanoparticles and rare- earth magnet nanomaterial and their exchange- coupled nanocomposites, as well as explaining the exchange- coupling principles.
乔双,侯仰龙. 磁性金属纳米颗粒及其交换耦合结构的化学制备及其磁学性能[J]. , 2017, 24(4): 1-16.
QIAO Shuang, HOU Yang- long. Magnetic metal nanoparticles and their exchange- coupled nanocomposites: chemical synthesis and magnetic properties. , 2017, 24(4): 1-16.
[1]L. D, Dr H. Synthesis, Properties, and Applications of Iron Nanoparticles [J]. Small, 2005, 1(5): 482-501.[2]Osuna J, Caro DD, Catherine Amiens A, et al. Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor [J]. Journal of Physical Chemistry, 1996, 100(35): 391-403.[3]Couto GG, Klein JJ, Schreiner WH, et al. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties [J]. Journal of Colloid & Interface Science, 2007, 311(2): 461-468.[4]Yang Z, Qiao S, Sun S, et al. Overview of Magnetic Nanomaterials [M]. Wiley‐VCH Verlag GmbH & Co. KGaA.[5]Su X, Zheng H, Yang Z, et al. Preparation of nanosized particles of FeNi and FeCo alloy in solution [J]. Journal of Materials Science, 2003, 38(22): 4581-4585.[6]Guo YQ, Li W, Luo J, et al. Structure and magnetic characteristics of novel SmCo-based hard magnetic alloys [J]. Journal of Magnetism and Magnetic Materials, 2006, 303(2): e367-e370.[7]Poudyal N, Ping Liu J. Advances in nanostructured permanent magnets research [J]. Journal of Physics D: Applied Physics, 2013, 46(4): 043001-043023.[8]Mohtasebzadeh AR, Ye L, Crawford TM. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media [J]. International journal of molecular sciences, 2015, 16(8): 19769-19779.[9]Molday RS, Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells [J]. Journal of Immunological Methods, 1982, 52(3): 353-367.[10]Tiefenauer LX, Tschirky A, Kühne G, et al. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI [J]. Magnetic Resonance Imaging, 1996, 14(4): 391-402.[11]Yang Z, Zhao T, Huang X, et al. Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions [J]. Chem Sci, 2017, 8(1): 473-481.[12]Reed MA, Frensley WR, Matyi RJ, et al. Realization of a three-terminal resonant tunneling device: The bipolar quantum resonant tunneling transistor [J]. Applied Physics Letters, 1989, 54(11): 1034-1036.[13]Denton R, Mühlschlegel B, Scalapino DJ. Electronic Heat Capacity and Susceptibility of Small Metal Particles [J]. Physical review letters, 1971, 26(12): 707-711.[14]Peng DL. Magnetic properties of monodispersed Co/CoO clusters [J]. Physical Review B, 2000, 61(4): 3103-3109.[15]Sun S, Murray CB. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) [J]. Journal of Applied Physics, 1999, 85(8): 4325-4330.[16]Yang HT, Shen CM, Su YK, et al. Self-assembly and magnetic properties of cobalt nanoparticles [J]. Applied Physics Letters, 2003, 82(26): 4729-4731.[17]Chu X, Hou Y. Overview of Synthesis of Magnetic Nanomaterials: Fundamentals, Synthesis and Applications [M]. 2017.[18]Jang HD, Hwang DW, Kim DP, et al. Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase [J]. Materials Research Bulletin, 2004, 39(1): 63-70.[19]Lu Y, Yin Y, And BTM, et al. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol?Gel Approach [J]. Nano letters, 2002, 2(3): 183-186.[20]Yang W, Rehman S, Chu X, et al. Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications [J]. ChemNanoMat, 2015, 1(6): 376-398.[21]Shao H, Huang Y, Lee H, et al. Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition [J]. Journal of Magnetism and Magnetic Materials, 2006, 304(1): e28-e30.[22]Shao H, Huang Y, Lee H, et al. Effect of surfactants on the size and shape of cobalt nanoparticles synthesized by thermal decomposition [J]. Journal of Applied Physics, 2006, 99(8): 08N702-708N704.[23]Lee DK, Kim YH, Zhang X-L, et al. Preparation of monodisperse Co and Fe nanoparticle using precursor of M2+-oleate2 (M=Co, Fe) [J]. Current Applied Physics, 2006, 6(4): 786-790.[24]Rosensweig RE. Fluidmagnetic buoyancy [J]. AIAA Journal, 1966, 4(10): 1751-1758.[25]Elliott DW, Zhang WX. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926.[26]Arruebo M, Fernández-Pacheco R, Ibarra MR, et al. Magnetic nanoparticles for drug delivery [J]. Nano Today, 2007, 2(3): 22-32.[27]Wang CB, Zhang W. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs [J]. Environmental Science Technology, 1997, 31(18): 9602-9607.[28]Peng S, Wang C, Xie J, et al. Synthesis and Stabilization of Monodisperse Fe Nanoparticles [J]. Journal of the American Chemical Society, 2006, 128(33): 10676-10677.[29]Lacroix LM, Huls NF, Ho D, et al. Stable single-crystalline body centered cubic Fe nanoparticles [J]. Nano letters, 2011, 11(4): 1641-1645.[30]Dumestre F, Chaudret B, Amiens C, et al. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 [J]. Science, 2004, 35(17): 821-823.[31]Meffre A, Lachaize S, Gatel C, et al. Use of long chain amine as a reducing agent for the synthesis of high quality monodisperse iron(0) nanoparticles [J]. Journal of Materials Chemistry, 2011, 21(35): 13464-13469.[32]Guo L, Huang Q, Li X-Y, et al. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis [J]. Physical Chemistry Chemical Physics, 2001, 3(9): 1661-1665.[33]Chen Y, Peng D-L, Lin D, et al. Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines [J]. Nanotechnology, 2007, 18(50): 505703-505708.[34]Lisiecki I, Albouy PA, Pileni MP. Face-Centered-Cubic “Supracrystals” of Cobalt Nanocrystals ? [J]. Advanced materials, 2010, 15(9): 712-716.[35]Murray CB, Sun S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM Journal of Research and Development, 2001, 45(1): 47-56.[36]Puntes VF, Krishnan KM, Alivisatos P. Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles [J]. Applied Physics Letters, 2001, 78(15): 2187-2189.[37]Hou Y, Gao S. Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties [J]. Journal of Materials Chemistry, 2003, 13(7): 1510-1512.[38]Hou Y, Kondoh H, Ohta T, et al. Size-controlled synthesis of nickel nanoparticles [J]. Applied Surface Science, 2005, 241(1-2): 218-222.[39]Winnischofer H, Rocha TC, Nunes WC, et al. Chemical synthesis and structural characterization of highly disordered N colloidal nanoparticles [J]. ACS nano, 2008, 2(6): 1313-1319.[40]Mourdikoudis S, Simeonidis K, Vilalta-Clemente A, et al. Controlling the crystal structure of Ni nanoparticles by the use of alkylamines [J]. Journal of Magnetism & Magnetic Materials, 2009, 321(18): 2723–2728.[41]Weller D, Moser A, Folks L, et al. High Ku materials approach to 100 Gbits/in2 [J]. IEEE Transactions on Magnetics, 2000, 36(1): 10-15.[42]Sun S, Murray CB, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 31(27): 1989-1992.[43]Kim J, Rong C, Liu JP, et al. Dispersible Ferromagnetic FePt Nanoparticles [J]. Advanced materials, 2009, 21(8): 906-909.[44]Rong CB, Li D, Nandwana V, et al. Size-Dependent Chemical and Magnetic Ordering in L10-FePt Nanoparticles [J]. Advanced materials, 2006, 18(22): 2984-2988.[45]Kim J, Rong C, Lee Y, et al. From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles [J]. Chemistry of Materials, 2015, 20(23): 7242-7245.[46]Jeyadevan B, Hobo A, Urakawa K, et al. Towards direct synthesis of fct-FePt nanoparticles by chemical route [J]. Journal of Applied Physics, 2003, 93(10): 7574-7576.[47]Dong Y, Liu F, Yang W, et al. Layer-by-layer assembly of L10-FePt nanoparticles with significant perpendicular magnetic anisotropy [J]. CrystEngComm, 2014, 16(40): 9430-9433.[48]Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J]. Advanced materials, 2003, 34(22): 353-389.[49]Zeng H, Philip M. Rice, X. Wang S, et al. Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles [J]. Journal of the American Chemical Society, 2004, 126(37): 11458-11459.[50]Hou Y, Kondoh H, Che R, et al. Ferromagnetic FePt nanowires: solvothermal reduction synthesis and characterization [J]. Small, 2006, 2(2): 235-238.[51]Wang C, Hou Y, Kim J, et al. A general strategy for synthesizing FePt nanowires and nanorods [J]. Angewandte Chemie, 2007, 46(33): 6333-6335.[52]Sanchez JM, Moran-Lopez JL, Leroux C, et al. Magnetic properties and chemical ordering in Co-Pt [J]. Journal of Physics C: Solid State Physics, 1988, 21(33): L1091-L1096.[53]Weller D, Br?ndle H, Gorman G, et al. Magnetic and magneto‐optical properties of cobalt‐platinum alloys with perpendicular magnetic anisotropy [J]. Applied Physics Letters, 1992, 61(22): 2726-2728.[54]Shevchenko EV, Talapin DV, Rogach AL, et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals [J]. Journal of the American Chemical Society, 2002, 124(38): 11480-11485.[55]Shevchenko EV, Talapin DV, Schnablegger H, et al. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals [J]. Journal of the American Chemical Society, 2003, 125(30): 9090-9101.[56]Ely TO, Pan C, C. Amiens A, et al. Nanoscale Bimetallic CoxPt1-x Particles Dispersed in Poly(vinylpyrrolidone): Synthesis from Organometallic Precursors and Characterization [J]. Journal of Physical Chemistry B, 2000, 104(4): 695-702.[57]Chen M, Nikles DE. Synthesis of spherical FePd and CoPt nanoparticles [J]. Journal of Applied Physics, 2002, 91(10): 8477-8479.[58]Park JI, Cheon J. Synthesis of “Solid Solution” and “Core-Shell” Type Cobalt?Platinum Magnetic Nanoparticles via Transmetalation Reactions [J]. Journal of the American Chemical Society, 2001, 123(24): 5743-5746.[59]Hou Y, Hiroshi K, Toshihiro K A, et al. Preparation and Characterization of Monodisperse FePd Nanoparticles [J]. Chemistry of Materials, 2004, 16(24): 11750-11758.[60]Mukherjee P, Manchanda P, Kumar P, et al. Size-Induced Chemical and Magnetic Ordering in Individual Fe–Au Nanoparticles [J]. ACS nano, 2014, 8(8): 8113-8120.[61]Langlois C, Benzo P, Arenal R, et al. Fully Crystalline Faceted Fe-Au Core-Shell Nanoparticles [J]. Nano letters, 2015, 15(8): 5075-5080.[62]Schilfgaarde MV, Abrikosov IA, Johansson B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400(6739): 46-49.[63]Xu MH, Zhong W, Qi XS, et al. Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties [J]. Journal of Alloys and Compounds, 2010, 495(1): 200-204.[64]Moustafa SF, Daoush WM. Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications [J]. Journal of Materials Processing Technology, 2007, 181(1-3): 59-63.[65]Wei X-W, Zhu G-X, Xia C-J, et al. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon [J]. Nanotechnology, 2006, 17(17): 4307-4311.[66]Sundar RS, Deevi SC. Soft magnetic FeCo alloys: alloy development, processing, and properties [J]. International Materials Reviews, 2013, 50(3): 157-192.[67]Burkert T, Nordstrom L, Eriksson O, et al. Giant magnetic anisotropy in tetragonal FeCo alloys [J]. Physical review letters, 2004, 93(2): 027203-027206.[68]Yu RH, Basu S, Zhang Y, et al. Magnetic domains and coercivity in FeCo soft magnetic alloys [J]. Journal of Applied Physics, 1999, 85(8): 6034-6036.[69]Hergt R, Dutz S. Magnetic particle hyperthermia‐biophysical limitations of a visionary tumour therapy [J]. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 187-192.[70]Chaubey GS, Barcena C, Poudyal N, et al. Synthesis and stabilization of FeCo nanoparticles [J]. Journal of the American Chemical Society, 2007, 129(23): 7214-7215.[71]Desvaux C, Amiens C, Fejes P, et al. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles [J]. Nature materials, 2005, 4(10): 750-753.[72]Seo WS, Lee JH, Sun X, et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents [J]. Nature materials, 2006, 5(12): 971-976.[73]Kirchmayr HR. Permanent magnets and hard magnetic materials [J]. Journal of Physics D Applied Physics, 1996, 29(11): 2763-2778.[74]Hasegawa M, Uchida K, Nozawa Y, et al. Rare earth magnets for applications over a wide temperature range [J]. Journal of Magnetism & Magnetic Materials, 1993, 124(3): 325-329.[75]Budde T, Gatzen HH. Magnetic properties of an SmCo/NiFe system for magnetic microactuators [J]. Journal of Magnetism & Magnetic Materials, 2004, 272(3): 2027-2028.[76]Sayama J, Mizutani K, Yamashita Y, et al. SmCo5-based thin films with high magnetic anisotropy for perpendicular magnetic recording [J]. IEEE Transactions on Magnetics, 2005, 41(10): 3133-3135.[77]Hou Y, Xu Z, Peng S, et al. A Facile Synthesis of SmCo5 Magnets from Core/Shell Co/Sm2O3 Nanoparticles [J]. Advanced materials, 2007, 19(20): 3349-3352.[78]Zhang H, Peng S, Rong C-B, et al. Chemical synthesis of hard magnetic SmCo nanoparticles [J]. Journal of Materials Chemistry, 2011, 21(42): 16873-16876.[79]Deheri PK, Swaminathan V, Bhame SD, et al. Sol?Gel Based Chemical Synthesis of Nd2Fe14B Hard Magnetic Nanoparticles [J]. Chemistry of Materials, 2010, 22(24): 6509-6517.[80]Rahimi H, Ghasemi A, Mozaffarinia R. Controlling of Saturation of Magnetization of Nd–Fe–B Nanoparticles Fabricated by Chemical Method [J]. Journal of Superconductivity and Novel Magnetism, 2016, 30(2): 475-481.[81]Coehoorn R, Mooij DBD, Duchateau JPWB, et al. NOVEL PERMANENT MAGNETIC MATERIALS MADE BY RAPID QUENCHING [J]. Le Journal De Physique Colloques, 1988, 49(C-8): 669-670.[82]Coehoorn R, De Mooij DB, De Waard C. Meltspun permanent magnet materials containing Fe3B as the main phase [J]. Journal of Magnetism and Magnetic Materials, 1989, 80(1): 101-104.[83]Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets [J]. IEEE Transactions on Magnetics, 2003, 27(4): 3588-3560.[84]Liu F, Hou Y, Gao S. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications [J]. Chemical Society reviews, 2014, 43(23): 8098-80113.[85]Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets [J]. Physical Review B, 1994, 49(9): 6100-6110.[86]Schrefl T, Kronmüller H, Fidler J. Exchange hardening in nano-structured two-phase permanent magnets [J]. Journal of Magnetism and Magnetic Materials, 1993, 127(3): L273-L277.[87]Liu JP. Nanoscale Magnetic Materials and Applications [M]. Springer US, 2009.[88]Guo ZJ, Jiang JS, Pearson JE, et al. Exchange-coupled Sm–Co/Nd–Co nanomagnets: correlation between soft phase anisotropy and exchange field [J]. Applied Physics Letters, 2002, 81(11): 2029-2031.[89]Shan ZS, Liu JP, Chakka VM, et al. Energy barrier and magnetic properties of exchange-coupled hard-soft bilayer [J]. IEEE Transactions on Magnetics, 2015, 38(5): 2907-2909.[90]Asti G, Solzi M, Ghidini M, et al. Micromagnetic analysis of exchange-coupled hard-soft planar nanocomposites [J]. Physical Review B, 2004, 69(17): 174401-174419.[91]Zeng H, Li J, Liu JP, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly [J]. Cheminform, 2002, 420(6914): 395-398.[92]Liu F, Zhu J, Yang W, et al. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell [J]. Angewandte Chemie, 2014, 53(8): 2176-2180.[93]Teranishi T, Wachi A, Kanehara M, et al. Conversion of anisotropically phase-segregated Pd/gamma-Fe2O3 nanoparticles into exchange-coupled fct-FePd/alpha-Fe nanocomposite magnets [J]. Journal of the American Chemical Society, 2008, 130(13): 4210-4211.[94]Sakuma N, Ohshima T, Shoji T, et al. Exchange Coupling Interaction in L10-FePd/α-Fe Nanocomposite Magnets with Large Maximum Energy Products [J]. ACS nano, 2011, 5(4): 2806-2814.[95]Yu Y, Sun K, Tian Y, et al. One-Pot Synthesis of Urchin-like FePd–Fe3O4 and Their Conversion into Exchange-Coupled L10–FePd–Fe Nanocomposite Magnets [J]. Nano letters, 2013, 13(10): 4975-4979.[96]Hou Y, Sun S, Rong C, et al. SmCo5∕Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles [J]. Applied Physics Letters, 2007, 91(15): 153117-153119.[97] Chaubey GS, Poudyal N, Liu Y, et al. Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles [J]. Journal of Alloys & Compounds, 2011, 509(5): 2132-2136.[98] Yang C, Jia L, Wang S, et al. Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6]?4H2O@GO Particles: A Novel Chemical Approach [J]. Scientific reports, 2013, 3(1): 3542-3548.[99] Yu L, Yang C, Hou Y. Controllable Nd2Fe14B/alpha-Fe nanocomposites: chemical synthesis and magnetic properties [J]. Nanoscale, 2014, 6(18): 10638-10642.[100] Yu LQ, Zhang YP, Yang Z, et al. Chemical synthesis of Nd2Fe14B/Fe3B nanocomposites [J]. Nanoscale, 2016, 8(26): 12879-12882.[101] Park J, Hong Y-K, Lee J, et al. Electronic Structure and Maximum Energy Product of MnBi [J]. Metals, 2014, 4(3): 455-464.[102] Kharel P, Thapa P, Lukashev P, et al. Transport Spin Polarization of High-Curie Temperature MnBi Films [J]. Physical Review B, 2011, 83(2): 2385-2385.[103] Kharel P, Shah VR, Li XZ, et al. Structural and magnetic properties of Pr-alloyed MnBi nanostructures [J]. Journal of Physics D: Applied Physics, 2013, 46(9): 095003-095010.[104]Shen J, Cui H, Huang X, et al. Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals [J]. RSC Adv, 2015, 5(8): 5567-5570.[105] Hong Y-K, Park J, Mryasov ON, et al. Magnetic properties of MnBi based alloys: First-principles calculations for MnBi-Co and MnBi-Co-Fe cases [J]. AIP Advances, 2013, 3(5): 052137-052141.[106] Ma YL, Liu XB, Gandha K, et al. Preparation and magnetic properties of MnBi-based hard/soft composite magnets [J]. Journal of Applied Physics, 2014, 115(17): 17A755-717A757.[107] Xu X, Hong Y-K, Park J, et al. Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites [J]. Journal of Solid State Chemistry, 2015, 231(2): 108-113.