Abstract:A series of La0.67Ca0.33-xNaxMnO3 ceramics(x= 0.05, 0.10, 0.15, 0.20, 0.25) were prepared by sol-gel technique. The crystal structures, the surface morphology and the temperature dependence of the resistivity (R-T) of the bulk samples were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and the standard four-probe method, respectively. The temperature dependence of magnetization (M-T) has been measured at 100~200 K. The results show that with the increase of the content of sodium(Na), the unit cell volume increases and the resistance decreases. Meanwhile, the insulator-metal transition temperature TP shifts to higher temperature and the temperature coefficient of resistivity (TCR) decrease continually. The data of resistivity on low-temperature (T<TP) can be fitted with the relation ρ(T)=ρ0+ρ2.5T2.5. Andthe high-temperature (T>TP) resistivity data can be explained by using small-polaron hopping (SPH) and variable-range hopping (VRH) models. The resistivity data in whole temperature range (100~300K) can be simulated by percolation model.The results indicate that the bond angle of Mn3+-O2--Mn4+ increase with the doping contant of Na (x) increasing, while Polaron activation energy (Ea) decrease. The research results show that the doping Na can enhance the double exchange effect of the materials, which is the reason of the decrese of the resistivity.
[1] Gennes P G D. Effects of Double Exchange in Magnetic Crystals[J]. Physical review, 1960, 118(1):141-154.[2] Attfield J P. ‘A’ cation control of perovskite properties[J]. Crystal Engineering, 2002, 5(3–4):427-438.[3] Dhahri A, Rhouma F I H, Mnefgui S, et al. Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)0.3Mn0.9V0.1O3[J].Ceramics International, 2014, 40(1):459-464.[4] Selmi A, M’Nassri R, Cheikhrouhou-Koubaa W, et al. Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3manganites[J]. Ceramics International, 2015, 41(8):10177-10184.[5] Von H R, Wecker J, Holzapfel B, et al. Giant Magnetoresistance in Perovskite-like La2/3Ba1/3MnO3 Ferromagnetic Films[J]. Physical Review Letters, 1993, 71(14):2331-2333.[6] Haghirigosnet A M, Renard J P. CMR manganites: physics, thin films and devices[J]. Journal of Physics D Applied Physics, 2003, 36(8):R127.[7] Mnefgui S, Zaidi N, Dhahri N, et al. Electrical transport properties and transport–entropy correlations in La0.57Nd0.1Sr0.33MnO3manganite[J]. Journal of Magnetism & Magnetic Materials, 2015, 384:219-223.[8] Ehsani M H, Kameli P, Razavi F S, et al. Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8?xSmxSr0.2MnO3(0<x<0.45) manganites[J]. Journal of Alloys and Compounds, 2013, 579: 406-414.[9] Kuberkar D G, Doshi R R, Solanki P S, et al. Grain morphology and size disorder effect on the transport and magnetotransport in Sol–Gel grown nanostructured manganites[J]. Applied Surface Science, 2012, 258(22):9041-9046.[10]罗均美. (La(0.67)Ca(0.33-y)SryMnO3)(1-X):Agx材料制备及电性能研究[D]. 昆明理工大学, 2016.[11] Mnefgui S, Zaidi N, Dhahri N, et al. Electrical transport properties and transport–entropy correlations in La0.57Nd0.1Sr0.33MnO3 manganite[J]. Journal of Magnetism & Magnetic Materials, 2015, 384:219-223.[12] Nakajima T, Ueda Y. Structures and electromagnetic properties of the A-site disordered Ba-based manganites; R0.5Ba0.5MnO3, (R = Y and rare earth elements)[J]. Journal of Alloys & Compounds, 2004, 383(1–2):135-139.[13] Kansara S B, Dhruv D, Joshi Z, et al. Structure and Microstructure Dependent Transport and Magnetic Properties of Sol-Gel Grown Nanostructured La0.6Nd0.1Sr0.3MnO3Manganites: Role of Oxygen[J]. Applied Surface Science, 2015, 356:1272-1281.[14] Ben Rejeb M, Ben Osman C, Regaieg Y, et al. A comparative study of La0.65Ca0.2(Na0.5K0.5)0.15MnO3 compound synthesized by solid-state and sol-gel process[J]. Journal of Alloys and Compounds, 2017, 695: 2597-2604.[15] Jin F, Zhang H, Chen X, et al. Enhancement of temperature coefficient of resistance (TCR) and Magneto-resistance (MR) in La1–xCaxMnO3:Ag0.2 polycrystalline composites[J]. Journal of Sol-Gel Science and Technology, 2017, 82(1): 193-200.[16] Ma J, Cai Y, Wang W, et al. Enhancement of temperature coefficient of resistivity in La0.67Ca0.33MnO3 polycrystalline ceramics[J]. Ceramics International, 2014, 40(3): 4963-4968.[17] Eshraghi M, Kameli P, Khalili F, et al. Structural, magnetic and electrical characterization of the La0.7Ca0.3Co1–xMnxO3(x=0, 0.7 and 1) compounds prepared by a simple method[J]. Journal of Rare Earths, 2014, 32(10): 965-972.[18] Das S, Dey T K. Electrical conductivity and low field magnetoresistance in polycrystalline La1?xKxMnO3 pellets prepared by pyrophoric method[J]. Solid State Communications, 2005, 134(12): 837-842.[19] Manjunatha S O, Rao A, Lin T Y, et al. Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35?xBaxMnO3 (0 ? x ? 0.25) manganites[J]. Journal of Alloys & Compounds, 2015, 619: 303-310.[20] Gamzatov A G, Batdalov A B, Khanov L N, et al. Influence of grain boundaries on resistivity of manganites La1?xKxMnO3[J]. Physics of the Solid State, 2012, 54(3): 617-621.[21] Yanapu K L, Samatham S S, Kumar D, et al. Effect of bismuth doping on the physical properties of La-Li-Mn-O manganite[J]. Applied Physics A, 2016, 122(3): 1-8.[22] Navasery M, Halim S A, Dehzangi A, et al. Electrical properties and conduction mechanisms in La2/3Ca1/3MnO3 thin films prepared by pulsed laser deposition on different substrates[J]. Applied Physics A, 2014, 116(4): 1661-1668.[23] Schiffer P E, Ramirez A P, Bao W, et al. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1?xAxMnO3[J]. Physical Review Letters, 1995, 75(18):3336-3339.[24] Vlakhov E S, Chakalov R A, Chakalova R I, et al. Influence of the substrate on growth and magnetoresistance of La0.7Ca0.3MnOz thin films deposited by magnetron sputtering[J]. Journal of Applied Physics, 1998, 83(4):2152-2157.[25] Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials[M]. Clarendon press: oxford,1979.[26] T. Holstein. Studies of polaron motion : Part II. The “small” polaron[J]. Annals of Physics, 2000, 281(1-2):725-773.[27] Lakshmi Y K, Reddy P V. Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La0.67Na0.33MnO3manganite[J]. Journal of Alloys & Compounds, 2009, 470(1–2):67-74.[28] Oumezzine M, Kallel S, Pe?a O, et al. Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33?x□x MnO3, (x=0,0.05,and0.1) manganite[J]. Journal of Alloys & Compounds, 2014, 582(3):640-646.[29] Schiffer P, Ramirez A P, Bao W, et al. Low temperature magnetoresistance and the magnetic phase diagram of La1– xCaxMnO3[J]. Physical Review Letters, 1995, 75(18):3336-3339.