Abstract:In this paper, the application status and Prospect of stainless steel fiber sintering felt in microbial fuel cell anode are introduced in detail. The stainless steel fiber sintered felt is made of micron-grade stainless steel fibers through non-woven laying, stacking and vacuum sintering. It is a three-dimensional metallic porous material formed of fibers with different wire diameters. It has the advantages of high mechanical strength, good permeability, good conductivity, strong adsorption capacity, corrosion resistance, high temperature resistance, easy processing and so on. It has great application value in the high-efficiency microbial fuel cell anode materials.
[1] Logan B E, Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies[J]. Science, 2012, 337(6095):686-690. [2] Larrosa-Guerrero A, Scott K, Head I M, et al. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12):3985-3994. [3] Gil G C, Chang I S, Kim B H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Bioresource Technology, 2003, 18(4):327-334. [4] Hou J, Liu Z, Yang S, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258:204-209. [5] Pocaznoi D, Calmet A, Etcheverry L, et al. Stainless steel is a promising electrode material for anodes of microbial fuel cells[J]. Energy & Environmental Science, 2012, 5.[6] Heras N D L, Roberts E P L, Langton R, et al. A review of metal separator plate materials suitable for automotive PEM, fuel cells[J]. Energy & Environmental Science, 2009, 2(2):206-214. [7] Zhang Y, Xue R, Zhang X, et al. rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC[J]. Energy, 2015, 91:1081-1086. [8] Yi P, Peng L, Lai X, et al. Investigation of sintered stainless steel fiber felt as gas diffusion layer in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(15):11334-11344. [9] Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances, 2007, 25(5):464-482. [10] Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12):512-518. [11] F. Zhao, R. C. T. Slade and J. R. Varcoe, Techniques for the study and development of microbial fuel cells: An electrochemical perspective[J]. Chemical Society Reviews, 2009, 38, 1926-1939. [12] Lovley, Derek R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7):497-508. [13] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6):291-298.[14] Abhilasha S Mathuriya, V N Sharma. Bioelectricity production from various wastewaters through microbial fuel cell technology[J]. Journal of Biochemical Technology, 2009, 2(1):133-137. DOI: 10.1016/j.biortech.2011.09.129.[15] Zhao C E , Gai P , Song R , et al. Nanostructured material-based biofuel cells: recent advances and future prospects[J]. Chemical Society Reviews, 2017, 46. [16] Xie, X., Hu, L., Pasta, M., et al. Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells[J]. Nano Letters, 2011, 11(1):291-296. [17] Torres, C.I., Marcus, A.K., Lee, H.S., et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria[J]. FEMS Microbiology Reviews, 2010, 34:3-17. [18] Zhang P Y , Liu Z L . Experimental study of the microbial fuel cell internal resistance[J]. Journal of Power Sources, 2010, 195(24):8013-8018. [19] Ghasemi M , Daud W R W , Mokhtarian N , et al. The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(22):9525-9532. [20] Rahimnejad, M., Adhami, A., Darvari, S., et al. Microbial fuel cell asnew technology for bioelectricity generation: A review[J]. Alexandria Engineering Journal, 2015, 54:745-756. [21] Ren, H., Pyo, S., Lee, J.I., et al. A high power density miniaturized microbial fuel cell having carbonnanotube anodes[J]. Journal of Power Sources, 2015, 273:823-830.[22] ter Heijne, A., Hamelers, H.V.M., et al. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53:5697-5703. [23] Crittenden S R, Sund C J, Sumner J J. Mediating Electron Transfer from Bacteria to a Gold Electrode via a Self-Assembled Monolayer[J]. Langmuir, 2006, 22(23):9473-9476.[24] Richter, H., McCarthy, K., Nevin, K.P., et al. Electricity Generation by Geobacter sulfurreducens Attached to Gold Electrodes[J]. Langmuir, 2008, 24:4376-4379. [25] Zhu X , Logan B E . Copper anode corrosion affects power generation in microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3):471-474. [26] Ketep S. F., Bergel A., Calmer A., et al. Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems[J]. Energy Environmental Science, 2014, 7(5):1633. [27]Guo K., Soeriyadi A. H., Feng H., et a1. Heat-treated stainless steel felt as scalable anode material for bioelectrochenfical systems[J]. Bioresource Technology, 2015, 195:46-50. [28] Pocaznoi, D., Calmet, A., Etcheverry, L., et al. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environmental Science, 2012, 5:9645.[29] Li Y, Zheng Y, Bao S. Hierarchically Structured Porous Materials for Energy Conversion and Storage[J]. Advanced Functional Materials, 2012, 22. [30] Heras N D L, Roberts E P L, Langton R, et al. A review of metal separator plate materials suitable for automotive PEM, fuel cells[J]. Energy & Environmental Science, 2009, 2(2):206-214. [31] Yu H , Wang Y , Liu Y , et al. Grain growth behavior of an as-drawn 316L stainless steel fiber after annealing treatment[J]. Materials Characterization, 2015 (109) :79-87. [32] Fan Y, Sharbrough E, Liu H. Quantification of the Internal Resistance Distribution of Microbial Fuel Cells[J]. Environmental Science & Technology, 2008, 42(21):8101-8107. [33] Ferg E E, Van Vuuren F. Comparative capacity performance and electrochemical impedance spectroscopy of commercial AA alkaline primary cells[J]. Electrochimica Acta, 2014, 128:203-209.[34] Hou J, Liu Z, Li Y. Polyaniline Modified Stainless Steel Fiber Felt for High-Performance Microbial Fuel Cell Anodes[J]. Journal of Clean Energy Technologies, 2015, 3(3):165-169.[35] Yu Y Y, Chen H L, Yong Y C, et al. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells[J]. Chemical Communications, 2011, 47(48):12825-12827.[36] Yin Y, Huang G, Tong Y, et al. Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field[J]. Journal of Power Sources, 2013, 237(1):58-63. [37] Hutchinson A J, Tokash J C, Logan B E. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(22):9213-9219.