Abstract:The oxygen partial pressure at high temperature for six different water conditions has been calculated and compared with the thermal calculation method. It is obtained that the critical oxygen partial pressure at 570℃ are 1.0E-15 for both TP347H and T91 materials, at which it occurs the transformation of high temperature oxidation products. However, the calculated oxygen partial pressure for water conditions OT(1), pure water and AVT(R1) at this temperature are all higher than 1.0E-10, and then it can conclude that the normal water conditions such as adding oxygen conditions and reductive total volatilization treatment conditions should have the similar thermal controlling effect on the high temperature oxidation products for materials TP347H and T91. The type of oxidation products vary as the content of the alloying elements change. The volume fraction of dense Cr2O3 in the skin layer would increase as the content of Cr increases. For the new Fe-18Ni-25Cr-xAl material, as the content of Al increases, the mass fraction of (Fe,Cr,Al)2O3 increases. Furthermore, it found that Al2O3 would form in the skin layer as the Al content is higher than 3%, and then it can have better effect on high temperature oxidation protection.
[1]柯道斌.超临界机组 受热管内氧化皮堆积爆管分析与预防[J].工业技术科技创新与应用, 2017, 5(1):145-145
[2]H. Steiner, J. KONYS.Stresses in oxidized claddings and mechanical stability of oxide scales, FZKA-7191[R]. Wissenschaftliche Berichte:2006.
[3]H. Sun, H.Yang, M. Wang, B.G. Palomares, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water[J].Journal of Nuclear Materials, 2017, 484(1):339-346
[4]A.S. Maderuelo, D.G. Briceno.Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water[J].Nuclear Engineering and Design, 2016, 307(1):30-38
[5]A.S. Sabau,I.G. Wright, J.P. Shingledecker .Oxide scale exfoliation and regrowth in TP347H superheater rubes[J].Materials and Corrosion, 2012, 63(1):1-12
[6] R B. Dooley. Program on technology innovation:oxide growth and exfoliation on alloys exposed to steam[R]. 1013666, EPRI, 2007.
[7]I.G. Wrighta. Progress in prediction and control of scale exfoliation on superheater and reheater alloys[A]. EPRI International Conference on Boiler Tube and HRSG Tube Failures and Inspections[C]. San Diego, 2004.
[8]Jeremy Bischoff, Arthur T Motta.Oxidation behavior of ferritic–martensitic and ODS steels in supercritical water[J].Journal of Nuclear Materials, 2012, 424(1):261-276
[9]G.S. Was, S. Teysseyre, Z. Jiao.Corrosion of austenitic alloys in supercritical water[J].Corrosion, 2006, 62(1):989-1005
[10]Z. Zhu, H. Xu, D. Jiang, G. Yue, B. Li, N. Zhang.The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel[J].Journal of Supercritical Fluid, 2016, 108(1):56-60
[11]D.Jiang, H. Xu, B. Deng, M. Li, Z. Xiao, N. Zhang.Effect of oxygenated treatment on corrosion of the whole steam–water system in supercritical power plant[J].Applied Thermal Engineering, 2016, 93(1):1248-1253
[12]朱志平.外加溶氧对锅炉过热器管内氧化皮生长及剥落的影响[J].全面腐蚀控制, 2016, 30(5):13-14
[13] 贾建民, 唐丽英, 曹杰玉等.锅炉给水中溶解氧含量对TP347H不锈钢蒸汽氧化行为影响的实验研究[C]. 锅炉管内壁氧化问题及其综合防治技术交流会议资料汇编, 上海, 2014, pp. 41-47.
[14]N.Zhang, Z. Zhu, Q. Zhang, et al.Corrosion of TP347HFG in supercritical water with different dissolved oxygen content[J].Advanced Science Letters, 2013, 19(8):2440-2443
[15]张广文, 孙本达,张金升,顾庆华,蔡井刚.给水加氧处理对过热器高温氧化皮生成影响的试验研究[J].热力发电, 2012, 41(1):31-33
[16] 苏航.热力学、动力学计算技术在钢铁材料研究中的应用[M]. 北京: 科学出版社, 2012.
[17]李长荣等.计算材料热力学与镁合金设计[J].中国材料进展, 2015, 34(1):31-32
[18]Davies Hugh, Dinsdale Alan.Theoretical study of steam grown oxides as a function of temperature,pressure and p(O2)[J].Materials at High Temperatures, 2005, 22(1):15-25
[19]张根元,王育烽.高温氧化处理气氛的热力学分析与控制[J].河海大学学报, 2001, 29(1):100-102
[20]高文华,沈朝,张乐福.T91钢在超临界水环境中的腐蚀性能[J].腐蚀与防护, 2016, 37(6):444-448