Abstract:Lithium ion batteries (LIBs) have been widely used in portable electronic devices and electric vehicles due to their high energy density, low self-discharge and excellent cycling performance, which promote the development of intelligent and green society. In this paper, the developing history and working mechanism of LIBs are introduced. The main properties and research progress of the cathode and anode materials classified by the lattice structure and lithium storage mechanism, respectively, are illustrated in detail. The functions of the liquid electrolytes, which are composed of lithium salts, additives and solvent, as well as solid-state electrolytes are also discussed. Subsequently, the practical application and safety issue of LIB are emphasized. At the end, the prospects of LIBs in the future are proposed. With the breakthrough of these key technologies and materials, lithium-ion batteries with better performance will definitely benefit mankind better.
[1] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126.[2] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0<X≤1): A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783.[3] Zhang H, Li C, Eshetu G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. 2020, 59(2): 534.[4] Xie J, Lu Y-C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.[5] Goodenough J B, Park K-S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167.[6] Whittingham M S. Lithium batteries and cathode materials[J] . Chemical Reviews, 2004, 104(10): 4271.[7] 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(VII)——正极材料[J]. 储能科学与技术, 2014, 3(01): 53.[8] Mizushima K, Jones P, Wiseman P, et al. LixCoO2 (0<x<1): A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783.[9] Liu C, Neale Z G, Cao G. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016, 19(2): 109.[10] Reimers J N , Dahn J R . Electrochemical and in situ X-ray-diffraction studies of Lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8):2091.[11] Zhang J N, Li Q, Ouyang C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594.[12] Qian J W, Liu L, Yang J X, et al. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J]. Nature Communications, 2018, 9(1): 1.[13] Chen Z, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J]. Electrochimica Acta, 2003, 49(7): 1079. [14] Daheron L, Dedryvere R, Martinez H, et al. Possible explanation for the efficiency of Al-based coatings on LiCoO2: surface properties of LiCo1-xAlxO2 solid solution[J]. Chemistry Of Materials, 2009, 21(23): 5607.[15] Hudaya C, Park J H, Lee J K, et al. SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries[J]. Solid State Ionics, 2014, 256: 89.[16] Wang Z, Wu C A, Liu L, et al. Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries[J]. Journal of the electrochemical Society, 2002, 149(4): A466.[17] Dahn J R, Sacken U V, Juzkow M W, et al. Rechargeable LiNiO2/Carbon Cells[J]. Journal of the Electrochemical Society, 1991, 138(8):2207.[18] Dahn J R, Sacken U V, Michal C A. Structure and electrochemistry of Li1+/-yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J]. Solid State Ionics, 1990, 44(1-2):87.[19] Broussely M, Perton F, Biensan P, et al. LIxNiO2, A promising cathode for rechargeable lithium batteries[J]. Journal of Power Sources, 1995, 54(1): 109.[20] Liu W, Oh P, Liu X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440.[21] Lee K K, Yoon W S, Kim K B, et al. Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1-xNiO2[J]. Journal of Power Sources, 2001, 97-8: 321.[22] Rougier A, Saadoune I, Gravereau P, et al. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials[J]. Solid State Ionics, 1996, 90(1): 83.[23] Cao H, Du F, Adkins J, et al. Al-doping induced duperior Lithium ion storage capability of LiNiO2 spheres[J]. Ceramics International, 2020, 46(12): 20050.[24] Shao-Horn Y, Hackney S A, Armstrong A R, et al. Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging[J]. Journal of the electrochemical Society, 1999, 146(7): 2404.[25] Tuccillo M, Palumbo O, Pavone M, et al. Analysis of the phase stability of LiMnO2 layered oxides (M = Co, Mn, Ni)[J]. Crystals, 2020, 10(6): 526.[26] Hayashi T, Okada J, Toda E, et al. Degradation mechanism of LiNi0.82Co0.15Al0.03O2 positive electrodes of a lithium-ion battery by a long-term cycling test[J]. Journal of the electrochemical Society, 2014, 161(6): A1007.[27] Delmas C, J.P.Peres, Rougier A. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. Journal of Power Sources, 1997, 68(1): 120.[28] Lin F, Markus I M, Nordlund D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communication, 2014, 5: 3529.[29] Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electrochemical Society, 2014, 161(6): A920.[30] Huang B, Li X H, Wang Z X, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223.[31] Xunhui, Xiong, Zhixing, et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C[J]. Journal of Materials Chemistry A, 2013, 1: 1284. [32] Yu X, Lyu Y, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): 1300950.[33] Hy S, Felix, Chen Y H, et al. In situ surface enhanced raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes[J]. Journal of Power Sources, 256: 324.[34] Vegard L. Die konstitution der mischkristalle und die raumfüllung der atome[J]. Zeitschrift für Physik, 1921, 5(1): 17.[35] Ma Y, Liu P, Xie Q, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184.[36] Yu C, Wang H, Guan X, et al. Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 (x=0.1, 0.2, 0.3, 0.4) at different temperatures[J]. Journal of Alloy and Compounds, 2013, 546: 239.[37] Hy S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5)[J]. Jounal of the American Chemical Society, 2014, 136(3): 999.[38] Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. Acs Nano, 2012, 7(1): 760.[39] Zheng H, Hu Z, Liu P, et al. Surface Ni-rich engineering towards highly stable Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials[J]. Energy Storage Materials, 2020, 25: 76.[40] Xu M, Fei L, Lu W, et al. Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application[J]. Nano Energy, 2017, 35: 271.[41] Zheng J, Deng S, Shi Z, et al. The effects of persulfate treatment on the electrochemical properties of Li[Li00.2.Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Journal of Power Sources, 2013, 221: 108.[42] Song B, Liu H, Liu Z, et al. High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J]. Scientific Reports, 2013, 3(1): 1.[43] Wu B, Yang X, Jiang X, et al. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(37): 1803392.[44] Tang W, Kanoh H, Xiaojing Yang A, et al. Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions[J]. Chemistry of Materials, 2000, 12(11): 3271.[45] Xu G, Li J, Xue Q, et al. Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co/3Mn1/3O2 cathode material with mild acid treatment[J]. Journal of Power Sources, 2014, 248: 894.[46] Liu P, Zhang H, He W, et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode[J]. Journal of The American Chemical Society, 2019, 141(27): 10876.[47] Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters, 2010, 10(10): 3852.[48] 廖春发, 郭守玉, 陈辉煌. 锂离子电池正极材料的制备研究现状[J]. 有色金属科学与工程, 2003, 17(2): 34.[49] Chung K Y, Kim K B. Investigations into capacity fading as a result of s Jahn-Teller fistortion in 4 V LiMn2O4 thin film electrodes[J]. Electrochimica Acta, 2004, 49(20): 3327.[50] 梁英, 饶睦敏, 蔡宗平, 等. 锂离子电池正极材料LiMn2O4改性研究进展[J]. 电池工业, 2009, 14(001): 69.[51] 崔永丽, 吴超, 魏涛, 等. Al掺杂及Al2O3表面包覆改性尖晶石LiMn2O4的电化学性能[J]. 化学通报, 2011, 074(008): 742.[52] Wen S Q, Gao L C, Wang J L, et al. Electrochemical performance Cr doped spinel LiMn2O4 cathode for lithium ion batteries[J]. Key Engineering Materials, 2014, 636: 49.[53] Amatucci G G, Blyr A, Sigala C, et al. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104(1-2): 13.[54] Waller G H, Brooke P D, Rainwater B H, et al. Structure and surface chemistry of Al2O3 coated LiMn2O4 aanostructured electrodes with improved lifetime[J]. Journal of Power Sources, 2016, 306(Feb.29): 162.[55] Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery[J]. 2004, 49(2): 219.[56] Amine K, Tukamoto H, Yasuda H, et al. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries[J]. Journal of the Electrochemical Society, 1996, 143(5): 1607.[57] Zhong Q, Bonakdarpour A, Zhang M, et al. Synthesis and electrochemistry of LiNixMn2-xO4[J]. Journal of the Electrochemical Society, 1997, 144(1): 205.[58] Ohzuku T, Takeda S, Iwanaga M. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a Series of 5 volt materials for advanced lithium-ion batteries[J]. 1999, 81: 90.[59] Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332[J]. 2004, 35(21): 906.[60] Prosini P P, Lisi M, Zane D, et al. Determination of The Chemical Diffusion Coefficient of Lithium in LiFePO4[J]. Solid State Ionics, 2012, 148(1-2): 45.[61] Shin H C, Cho W I, Jang H. Electrochemical properties of carbon-coated LiFePO4 cathode using Ggraphite, carbon black, and acetylene black[J]. Electrochimica Acta, 2007, 52(4): 1472.[62] Zhang, Lu L, Yang, et al. Natural graphite enhanced the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(2): 311.[63] Padhi A A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188.[64] 马锐, 蔡芬峰, 水淼, et al. 锂离子电池正极材料LiVPO4F的合成及分析[J]. 热加工工艺, 2012, 41(16): 89.[65] Haegyeom, Kim, And, et al. Nano-graphite platelet loaded with LiFePO4 nanoparticles used as the cathode in a high performance Li-ion battery[J]. Carbon, 2012, 50(5): 1966. [66] Li Z, Dong G, Kang J, et al. Preparation and electrochemical properties of nanoparticle structural LiFePO4/C by Sol-Gel method as cathode material for lithium ion batteries[J]. Journal of Materials Ence Materials In Electronics, 2019, 30(7): 6593.[67] Yin S C, Grondey H, Strobel P, et al. Electrochemical property:? structure relationships in monoclinic Li3-yV2(PO4)3[J]. Journal of the American Chemical Society, 2003, 125(34): 10402. [68] 唐鑫, 钟胜奎, 吕海峰. LiVPO4F电子结构及电化学性质的第一性原理研究[J]. 无机化学学报, 2011, 027(006): 1065.[69] Cui K, Hu S, Li Y. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2016, 325(Sep.1): 465.[70] Wang J, Li X, Wang Z, et al. Enhancement of electrochemical performance of Al-doped LiVPO4F using AlF3 as aluminum source[J]. Journal of Alloys and Compounds, 2013, 581: 836.[71] Ding X B, Zhou Y M, Yan G C, et al. High-performance spherical LiVPO4F/C cathode enabled by facile spray pyrolysis[J]. Science China-Technological Sciences, 2020.[72] Hu G, Gan Z, Peng Z, et al. Enhancing the high rate performance of synergistic hybrid LiFePO4·LiVPO4F/C cathode for lithium ion battery[J]. Solid State Ionics, 2019, 335: 142.[73] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652.[74] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47(8): 2049.[75] Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective[J]. Advanced Energy Materials, 2016, 6(17): 1600374.[76] Palacin M R. Recent advances in rechargeable battery materials: a chemist's perspective[J]. Chemical Socience Review, 2009, 38(9): 2565.[77] Tang Y, Zhang Y, Li W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Socience Review, 2015, 44(17): 5926.[78] Niu J, Shao R, Liu M, et al. Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors[J]. Energy Storage Materials, 2017, 12(14), 145.[79] Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(3): 3255.[80] Goriparti S, Miele E, De A F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 25(7): 421[81] Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 16113.[82] Wu Y, Zhu J, Huang L. A review of three-dimensional graphene-based materials: synthesis and applications to energy conversion/storage and environment[J]. Carbon, 2019, 143(6): 10.[83] Chen J, Mao Z, Zhang L, et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. Acs Nano, 2017, 11(12): 12650.[84] Shi Q, Liu W, Qu Q, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111(12): 291.[85] Zhao Z, Saikat D, Xing G, et al. A 3D organically synthesized porous carbon material for lithium‐ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(37): 11952.[86] Guo W, Si W, Zhang T, et al. Ultrathin NixCoy-silicate nanosheets natively anchored on CNTs films for flexible lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 54: 746. [87] Hu J, Xu Z L, Li X Y, et al. Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries[J]. Journal of Power Sources, 2020, 462(30): 228098.[88] Xing H X, Zhang F, Lu Y G, et al. Facile synthesis of carbon nanoparticles/graphene composites derived from biomass resources and their application in lithium ion batteries[J]. RSC Advances, 2016, 6(83): 79366.[89] Zhu Z, Cheng F, Chen J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites[J]. Journal of Materials Chemistry A, 2013, 1(33): 9484.[90] Chu S, Zhong Y, Cai R, et al. Lithium-ion batteries: mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free-standing electrodes for lithium-ion batteries[J]. Small, 2016, 6768.[91] D'errico F, Zilho J, Julien M, et al. Preparation and characterization of LiTi2O4 anode material synthesized by one-step solid-state reaction[J]. Current Anthropology, 1998, 39(1): 425.[92] Hasegawa G, Kanamori K, Kiyomura T, et al. Hierarchically porous Li4Ti5O12 anode materials for Li‐ and Na‐ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability[J]. Advanced Energy Materials, 2015, 5(1): 1.[93] Ge H, Chen L, Yuan W, et al. Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2015, 297(30): 436.[94] Mi R J, Lee G H, Kang Y M. Controlling solid-electrolyte-interphase layer by coating p-type semiconductor niox on Li4Ti5O12 for high-energy-density lithium-ion batteries[J]. Acs Applied Materials & Interfaces, 2015, 7(50): 27934. [95] Yi R J, Duh J G. Synthesis of entanglement structure in nanosized Li4Ti5O12-multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction[J]. Journal of Power Sources, 2012, 198(15): 294.[96] Deng D, Kim M G, Lee J Y, et al. Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2009, 2(8): 818.[97] Wang C, Wang L, Li F, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): 1702212. [98] Zhang T, Gao J, Zhang H P, et al. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(5): 886. [99] Li N C, Martin C R. A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis[J]. Journal of The Electrochemical Society, 2001, 148(2): 164.[100] Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small, 2018, 14(8): 1702737. [101] Yi Z, Lin N, Zhao Y, et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes[J]. Energy Storage Materials, 2019, 17(7): 93.[102] Zheng G R, Xiang Y X, Xu L F, et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(29): 1801718. [103] Kim Y Y, Kim H J, Jeong J H, et al. Facile fabrication of silicon nanotube arrays and their application in lithium‐ion batteries[J]. Advanced Engineering Materials, 2016, 18(8): 1349.[104] Kim Y M, Ahn J, Yu S H, et al. Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2015, 151(1): 256.[105] Wen Z, Cheng M, Sun J, et al. Composite silicon film with connected silicon nanowires for lithium ion batteries[J]. Electrochimica Acta, 2010, 56(1): 372.[106] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522.[107] Liu, Ruiping, Shen, et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(15): 14797.[108] Liu N, Wu H, Mcdowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letter, 2012, 12(6): 3315.[109] Liu Y C, Zhang N, Jiao L F, et al. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries[J]. Advanced Functional Materials, 2015, 25(2): 214.[110] Yi Z, Han Q G, Zan P, et al. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2016, 331(1): 16.[111] Zhang Y, Rui X, Tang Y, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502409.[112] Liang J, Hu H, Park H, et al. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties[J]. Energy & Environmental Science, 2015, 8(6): 17007.[113] Chu Y, Guo L, Xi B, et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage[J]. Advanced Materials, 2018, 30(6): 1704244.[114] Li Y F, Shi Y H, Wang S G, et al. Carbon binder Free NiO@NiO/NF with in situ formed interlayer for high areal capacity lithium storage[J]. Advanced Energy Materials, 2019, 9(14): 1803690.[115] Songru, Jia, Wang Y, Liu X, et al. Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries[J]. Nano Energy, 2019, 59(2): 229.[116] Zheng M, Tang H, Li L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries[J]. Advanced Science, 2018, 5(3): 1700592.[117] Wu C, Maier J, Yu Y. Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage[J]. Advanced Materials, 2016, 28(1): 174.[118] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496.[119] Zheng M, Tang H, Li L, et al. Hierarchically nanostructured transition metal oxides for lithium‐ion batteries[J]. Advanced Science, 2018, 1700592.[120] Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage[J]. Angewandte Chemie International Edition, 2016, 55(43): 13422.[121] Zhang H, Zhou L, Noonan O, et al. Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage[J]. Advanced Functional Materials, 2014, 24(27): 4337.[122] Jeong J M, Choi B G, Lee S C, et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes[J]. Advanced Materials, 2013, 25(43): 6250.[123] Chen Y M, Yu L, Lou X W. Hierarchical tubular structures composed of Co3 O4 hollow nanoparticles and carbon nanotubes for lithium storage[J]. Angewandte Chemie International Edition, 2016, 55(20): 5990.[124] Lv X, Zhong J, Sun X. Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries[J]. Applied Surface Science, 2019, 475(6): 446. [125] Ma Y, He J, Kou Z, et al. MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes[J]. Advanced Materials Interfaces, 2018, 5(14): 1800222.[126] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503.[127] Eineli Y, Thomas S R, Koch V R. New electrolyte system for Li-ion battery[J]. Journal of the Electrochemical Society, 1996, 143(9): 195.[128] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303.[129] Campion C L, Li W T, Lucht B L. Thermal decomposition of LiPF6-Based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(12): 2327.[130] Sloop S E, Pugh J K, Wang S, et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid State Letters, 2001, 4(4): 42.[131] Zhang S S, Xu K, Jow T R. Study of LiBF6 as an electrolyte salt for a Li-ion battery[J]. Journal of the Electrochemical Society, 2002, 149(5): 586.[132] Zhang S S, Xu K, Jow T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928.[133] Newman G H, Francis R W, Gaines L H, et al. Hazard investigations of LiClO4-dioxolane electrolyte[J]. Journal of the Electrochemical Society, 1980, 127(9): 2025.[134] Nanjundiah C, Goldman J L, Dominey L A, e al. Electrochemical stability of LiMF6 (M=P, As, Sb) in tetrahydrofuran and sulfolane[J]. Journal of the Electrochemical Society, 1988, 135(12): 2914.[135] Yang L, Furczon M M, Xiao A, et al. Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells[J]. Journal of Power Sources, 2010, 195(6): 1698.[136] Xu K, Deveney B, Nechev K, et al. Evaluating LiBOB/Lactone electrolytes in large-format lithium-ion cells based on nickelate and iron phosphate[J]. Journal of the Electrochemical Society, 2008, 155(12): 959.[137] Jow T R, Ding M S, Xu K, et al. nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells[J]. Journal of Power Sources, 2003, 119-121: 343.[138] Yang H, Kwon K, Devine T M, et al. Aluminum corrosion in lithium batteries - an investigation using the electrochemical quartz crystal microbalance[J]. Journal of the Electrochemical Society, 2000, 147(12): 4399.[139] Di Censo D, Exnar I, Graetzel M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications, 2005, 7(10): 1000.[140] 刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题 (Ⅸ)——非水液体电解质材料. 储能科学与技术[J]. 2014, 3(3): 262.[141] Hou J, Yang M, Wang D, et al. Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18):1904152.[142] Zhao W, Ji Y, Zhang Z, et al. Recent advances in the research of functional electrolyte additives for lithium-ion batteries[J]. Current Opinion in Electrochemistry, 2017, 6(1): 84.[143] Zhan C, Wu T, Lu J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes - A critical review[J]. Energy & Environmental Science, 2018, 11(2): 243.[144] Zhao H, Yu X, Li J, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook[J]. Journal of Materials Chemistry A, 2019, 7(15): 8700.[145] Han J-G, Kim K, Lee Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Advanced Materials, 2019, 31(20): e1804822.[146] Heiskanen S K, Kim J, Lucht B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322.[147] Tobishima S, Ogino Y, Watanabe Y. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells[J]. Journal of Applied Electrochemistry, 2003, 33(2): 143.[148] Chen G Y, Richardson T J. Overcharge protection for rechargeable lithium batteries using electroactive polymers[J]. Electrochemical and Solid State Letters, 2004, 7(2): 23.[149] Haregewoin A M, Wotango A S, Hwang B-J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955.[150] Xu R, Han F, Ji X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958.[151] Hu Z, Sheng J, Chen J, et al. Enhanced Li ion conductivity in Ge-doped Li0.33La0.56TiO3 perovskite solid electrolytes for all-solid-state Li-ion batteries[J]. New Journal of Chemistry, 2018, 42(11): 9074.[152] Chen S, Wen K, Fan J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631.[153] Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103[154] Kanno R, Hata T, Kawamoto Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1-2): 97.[155] Goodenough J B, Hong H Y P, Kafalas J A. Fast Na-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203.[156] Subramanian M A, Subramanian R, Clearfield A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)[J]. Solid State Ionics, 1986, 18-19, 562.[157] Aono H, Sugimoto E, Sadaoka Y, et al. Ionic conductivity of the lithium titanium phosphate (Li1+xMxTi2-x(PO4)3, M?=?Al,?Sc, Y,?and?La) systems[J]. Journal of The Electrochemical Society, 1989, 136(2): 590.[158] Huo H, Li X, Sun Y, et al. Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries[J]. Nano Energy, 2020, 73, 104836.[159] Inaguma Y, Chen L Q, Itoh M, et al. High ionic-conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689.[160] 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)—全固态锂离子电池[J]. 2014, 3(4): 376.[161] Tang S, Guo W, Fu Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2020, 2000802[162] Chen R, Qu W, Guo X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487.[163] Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects[J]. Chem, 2019, 5(9): 2326.[164] Armand M. The history of polymer electrolytes[J]. Solid State Ionics, 1994, 69(3): 309.[165] Ji J, Li B, Zhong W-H. Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes[J]. The Journal of Physical Chemistry B, 2010, 114(43): 13637.[166] Sengwa R J, Choudhary S, Dhatarwal P. Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites[J]. Advanced Composites and Hybrid Materials, 2019, 2(1): 162.[167] Liu Y, Lee J Y, Hong L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes[J]. Journal of Power Sources, 2004, 129(2): 303.[168] Pitawala H M J C, Dissanayake M A K L, Seneviratne V A. Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf[J]. Solid State Ionics, 2007, 178(13-14): 885.[169] Sun H Y, Takeda Y, Imanishi N, et al. Ferroelectric materials as a Ceramic filler in solid composite polyethylene oxide-based electrolytes[J]. Journal of The Electrochemical Society, 2000, 147(7): 2462.[170] Wieczorek W, Florjanczyk Z, Stevens J R. Composite polyether based solid electrolytes[J]. Electrochimica Acta, 1995, 40(13-14): 2251.[171] Fu K, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of The National Academy of Sciences of The United States of America, 2016, 113(26): 7094.[172] Banerjee A, Wang X, Fang C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878.[173] Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of The American Chemical Society, 2016, 138(30): 9385.[174] Park K, Yu B-C, Jung J-W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface Between LiCoO2 And garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051.[175] Han X, Gong Y, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572.[176] Han F, Yue J, Zhu X, et al. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18): 1703644.[177] Lepley N D, Holzwarth N A W, Du Y A. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Physical Review B, 2013, 88(10): 104103[178] Kotobuki M, Hoshina K, Kanamura K. Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2-x(PO4)3 solid electrolyte[J]. Solid State Ionics, 2011, 198(1): 22.[179] Zhang T, Imanishi N, Hasegawa S, et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte[J]. Journal of The Electrochemical Society, 2008, 155(12): 965.[180] Shen Y, Zhang Y, Han S, et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674.[181] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359.[182] Saito Y, Takano K, Negishi A. Thermal behaviors of lithium-ion cells during overcharge[J]. Journal of Power Sources, 2001, 97-98: 693. [183] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81.[184] Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries[J]. Journal of Power Sources, 2001, 101(2): 231.[185] Sharma N, Peterson V K. Overcharging a lithium-ion battery: effect on The LixC6 negative electrode determined by in situ neutron diffraction[J]. Journal of Power Sources, 2013, 244: 695.[186] Ren D, Feng X, Lu L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328.[187] Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820.[188] Sharifi‐Asl S, Lu J, Amine K, et al. Oxygen Release Degradation in Li-Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches[J]. Advanced Energy Materials, 2019, 9(22): 1900551.