Abstract:W/Y2O3-Cu composite powder prepared by wet chemical method was skeleton sintered, followed by 15 wt%Cu treatment with different holding time in the range of 1150-1450 ℃, to explore the effect of different infiltration process on the microstructure and properties of W/Y2O3-Cu composite. The results show that, for the W/Y2O3-green billet with 800 MPa pressure, it has the best skeleton structure under high temperature sintering at 1550 ℃, and the W/Y2O3-Cu composite prepared by melting 15 wt%Cu at 1250 ℃ for 3 h has the most uniform structure. It has high thermal conductivity (185.4 W/m·K), bending strength (1050.0 MPa), air tightness (5.3×10-11 Pa·m3·s-1) and low thermal expansion coefficient (6.7×10-6 /℃). The performance of W/Y2O3-Cu composites is significantly better than that of commercial W-15 wt%Cu composites, which is mainly attributed to the improvement of the microstructure and properties of W-skeleton used for copper infiltration by Y2O3 doping.
[1] 余惺, 王志法, 张启旺,等. 高速压制技术(HVC)在制备W-15Cu合金中的应用[J]. 粉末冶金技术, 2010, 28(6): 5.[2] Wang Y L, Zhou L C, Y E H. Progress, challenges and potentials/trends of tungsten-copper (W-Cu) composites/pseudo-alloys: Fabrication, regulation and application[J]. International Journal of Refractory Metals and Hard Materials, 2021, (100): 105648.[3] Kaessner S, Scheibe M G, Behrendt S, et al. Reliability of Novel Ceramic Encapsulation Materials for Electronic Packaging[J]. Journal of Microelectronics & Electronic Packaging, 2018, 9(4): 381-390.[4] Dong L L, Ahangarkani M, Chen W G, et al. Recent progress in development of tungsten copper composites: Synthesis, Modification, and Applications[J]. International Journal of Refractory Metals and Hard Materials, 2018, (75): 30-42.[5] 曾婧, 彭超群, 王日初, 等. 电子封装用金属基复合材料的研究进展[J]. 中国有色金属学报. 2015, 25(12): 3255-3270.[6] 王新刚, 张润梅, 陈典典,等. WCu/MoCu电子封装材料的研究现状与发展趋势[J]. 中国材料进展, 2018, 37(12): 8.[7] Li R, Yang X, Li J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. 2022, (22): 100594.[8] 徐竹. 钨铜复合材料制备技术的发展与应用[J]. 新技术新工艺, 2016(6):3.[9] Shanaghi A, Amiri A, Kazazi M, et al. Effects of processing parameters on phase, morphology, mechanical and corrosion properties of W–Cu nanocomposite powder prepared by electroless copper plating[J]. Applied physics. A, Materials science and processing. 2020, 126(8): 601.[10] Deng N, Zhou Z, Li J, et al. W-Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders[J]. International Journal of Refractory Metals and Hard Materials. 2019, (82): 310-316.[11] Wang L, Xu L, Srinivasakannan C, et al. Electroless copper plating of tungsten powders and preparation of WCu20 composites by microwave sintering[J]. Journal of alloys and compounds. 2018, (764): 177-185.[12] 邢宇轩, 郭英奎, 陈磊,等. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 9.[13] Tejado E, Müller A V, You J H, et al. The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content[J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2018, (498): 468-475.[14] 姜国圣, 王志法, 吴泓. W-15Cu合金制备中钨骨架孔隙控制的研究[J]. 粉末冶金技术, 2007, 25(2): 4.[15] Jiang G. Fabrication of Electronic Packaging Grade Cu-W Materials by High-Temperature and High-Velocity Compaction[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2012, 2(6): 1039-1042.[16] Gong X, Yu S, Li Y, et al. Enhanced Property of W-Cu Composites by Minor Addition of Ag[J]. Materials Transactions. 2019, 60(9): 1908-1913.[17] Ahangarkani M, Zangeneh-Madar K. Investigation on the microstructure and properties of W-10?wt%Cu prepared by sintering and infiltration[J]. International Journal of Refractory Metals and Hard Materials. 2018, (75): 1-9.[18] Zhou H, Feng K, Xiao Y, et al. Pressure effects on a novel W-Mo-Cu alloy by large current electric field sintering: sintering behavior, microstructure and properties[J]. Journal of Alloys and Compounds, 2019, (785): 965-971.[19] Wang D, Wei B, Wang Y, et al. Microstructure and mechanical properties of intragranular W-Cu/TiC-ZrC composite prepared by reactive melt infiltration at 1300 °C[J]. Materials Characterization, 2018, (138): 89-97.[20] 谌景波, 黄丽枚, 罗来马,等. TiC含量对W-30Cu/TiC复合材料显微结构和性能的影响[J]. 稀有金属材料与工程, 2018, 47(2):5.[21] Wei C, Xu X, Wei B, et al. Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W-30Cu composites prepared by microwave sintering[J]. Diamond and Related Materials, 2020, (104): 107760.[22] Luo L, Zhao Z, Yao G, et al. Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices[J]. Journal of Nuclear Materials, 2021, 548(6):152857.[23] Yao G, Tan X Y, Fu M Q, et al. Isotropic thermal conductivity in rolled large-sized W-Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology[J]. Fusion Engineering and Design, 2018, (137): 325-330.[24] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Scientific Reports, 2015, 5(1): 1-18.[25] Dong Z, Hu W Q, Ma Z Q, et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys[J]. Materials Chemistry Frontiers, 2019, (3): 1952-1972. [26] Hou C, Song X, Tang F, et al. W-Cu composites with submicron-and nanostructures: progress and challenges[J]. NPG Asia Materials, 2019, 11(1): 1-20.[27] Yao G, Liu X, Zhao Z, et al. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement[J]. Materials and Design, 2021, (212): 110249.[28] Hu W, Ma Q, Ma Z, et al. Ultra-fine W-Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering[J]. Tungsten, 2019, 1(3): 220-228.[29] Hu W, Dong Z, Yu L, et al. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: microstructure refinement and second phase particles regulation[J]. Journal of Materials Science and Technology, 2020, (36): 84-90.[30] Dong Z, Ma Z, Dong J, et al. The simultaneous improvements of strength and ductility in W-Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering[J]. Materials Science and Engineering: A, 2020, (784): 139329.[31] Patterson B R, Liu Y. Relationship between grain[J]. Metallurgical Transactions A, 1992 (23): 2481-2482.[32] Srivastav A K, Ch Awake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W-5 wt.%Mo alloy[J]. Scripta Materialia, 2019, (159): 41-45.[33] Randall G M. Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(4): 263-305.[34] 王君龙, 王庆相. 高均匀W-15Cu合金的制备[J]. 特种铸造及有色合金, 2017, 37(10): 4.[35] 何平, 王志法, 姜国圣. 钨铜合金的致密化技术[J]. 矿冶工程, 2007, 27(5): 81-83.[36] 陶剑青, 史晓亮. 抑制剂对W-15Cu合金性能与结构影响研究[J]. 武汉理工大学学报, 2011, 33(2): 5.[37] 任俊鹏, 王毓, 赵君, 等.钨渗铜复合材料致密化机理研究[J]. 稀有金属与硬质合金, 2020, 48(04): 17-23.[38] 李锐, 陈文革, 陶文俊. 松装熔渗法制备高强高导铜钨合金[J]. 特种铸造及有色合金, 2011, 31(09): 877-880.[39] Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W-ZrC alloys for plasmafacing components in fusion devices[J]. Nuclear Materials and Energy, 2018, (16): 191-206.[40] Zhang C, Shen Q, Zhang J, et al. Improved parallelism of graded W-Cu-SiC materials by adjusting the coefficient of thermal expansion[J]. Ceramics International, 2020, 46(7): 9714-9721.[41] Kumar S, Pradeepkumar M S, Dwivedi A, et al. Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 9022-9028.