Abstract:High quality L10-AuCu nanoparticles were synthesized by a facile wet chemical method. The impacts of the preparation process on the morphology, composition and ordering degree of L10-AuCu nanoparticles were investigated. These results go beyond previous reports, showing that the structure of AuCu nanoparticles will undergo ordering transformation with the increase of temperature. When the temperature is higher than 320℃, AuCu nanoparticles begin to transform into L10 structure. The addition amount of precursor also affects the morphology and ordering degree of AuCu nanoparticles. When Au/Cu increases slightly, the dispersion of AuCu nanoparticles decreases, and the strength of characteristic peak of L10 structure increases first and then decreases. AuCu nanoparticles with small size, high ordering degree and good dispersity were successfully synthesized at 340℃ and the Au/Cu ratio of 1.11. This method is expected to provide a new insight for directly preparing high-quality AuCu nanoparticles with high ordering degree and small size.
[1]Xie Y Q, Liu X B, Li X B, et al.Volume sequences of characteristic atoms separated from experimental volumes of AuCu and AuCu3 compounds[J].Transactions of Nonferrous Metals Society of China, 2009, 19(6):1599-1617[2]Cao J D, Cao H Y, Wang F H, et al.Zigzag PtCo nanowires modified in situ with Au atoms as efficient and durable electrocatalyst for oxygen reduction reaction[J]. [J].Journal of Power Sources, 2021, 229425:0378-7753[3]冷玉敏, 贺艳婷, 冷玉芹, 等.金纳米粒子在生物医学领域应用综述[J].南阳师范学院学报, 2015, 14(9):38-45[4]陈志强.铜基催化剂促进二氧化碳到多碳产物转化的电催化反应研究[D]. 天津: 天津大学, 2020.[5]孟根图雅, 李乌云塔娜.浅谈催化剂参与的催化反应[J].内蒙古石油化工学报, 2017, 43(7):32-33[6]Meng Z, Li G, Wong H F, et al.Patterning of L10-FePt nanoparticles with ultra-high coercivity for bit-patterned media[J].Nanoscale, 2017, 9(2):731-738[7]Pei W L, Zhao D, Wu C, et al.Facile liquid-assisted one-step sintering synthesis of superfine L10-FePt nanoparticles[J].RSC Advances, 2019, 9(62):36034-36039[8]Liao X M, Liu Y M, Wei C, et al.Promoting effect of AuCu alloying on Au-Cu/CeO2-catalyzed CO oxidation: A combined kinetic and in situ DRIFTS study[J].[J].Journal of Catalysis, 2020, 382:325-331[9]Gong M G, Alamri M, Ewing D, Sadeghi S M.Localized surface plasmon resonance enhanced light absorption in AuCu/CsPbCl3 core/shell nanocrystals[J]. Advanced Materials, 2020, 32(26):, 778-815.[J].Advanced Materials, 2020, 32(26):778-815[10]Yin F, Wang Z W, Palmer R E.Controlled formation of mass selected copper-gold core shell cluster beams[J].Journal of the American Chemical Society, 2011, 133(27):10325-10327[11]任占冬.磁控溅射制备合金电极及相关电催化研究[D]. 武汉: 武汉大学, 2014.[12]周启航.反应磁控溅射制备氧化亚铜薄膜的结构调控及光电性能研究[D]. 济南: 山东大学, 2018.[13]郭帅龙, 杨宇雯, 李郁秀, 等.的制备、表征及加氢催化性能研究[J].贵金属, 2018, 39(2):54-58[14]张秀梅.金、铜纳米颗粒及其复合材料的制备与应用[D]. 济南: 山东大学, 2019.[15]王佳丽.金基双金属纳米合金的制备及其催化性能[D]. 西安: 西北工业大学, 2019.[16]张俊凯.金铜合金及纳米多孔金的制备与性能研究[D]. 沈阳: 东北大学, 2018.[17]穆钰平, 汪汉斌, 刘向, 等.铜掺杂一步合成结构纳米粒子[J].金属功能材料, 2014, 21(1):12-16[18]余方新.Au-Cu合金系的系统研究[D]. 长沙: 中南大学, 2005.[19]毛远洋, 贾会敏, 何伟伟.双金属纳米粒子的制备、表征及性能探究[J].贵金属, 2020, 41(1):25-30[20]Zhang W C, Luoshan M D, Wang P F, et al.Growth of porous Ag@AuCu trimetal nanoplates assisted by self-assembly[J][J].Nanomaterials, 2020, 10(11):2207-2207[21]Nordin N, Noor N A M, Wahab N A A, et al.Preparation of bimetallic catalyst: gold-copper (Au-Cu) nanoparticles for catalytic reduction of p-nitrophenol[J].Materials Science and Engineering, 2020, 957(1):012-036[22]Roberts B W.X-ray measurement of order in CuAu[J].Acta Metallurgica, 1954, 2(4):597-607