Abstract:Abstract: Rare Earth Permanent Magnet (REPM) are widely used due to their high energy density. Compared with conventional polycrystalline REPM, nanostructural magnets exhibit extraordinary magnetic properties due to their unique microstructure. As a result, nanostructural REPM had drawn considerable attention during the last decades. This paper is a comprehensive review of research for the development of nanostructural permanent magnets in both the R-Co (R=Sm, Pr) and the R-Fe-B (R=Nd, Pr) systems. The experimental preparation techniques for nanostructural R-Co and R-Fe-B magnets including melt-spinning, high energy ball milling (HEBM), surfactant-assisted ball milling (SABM), and mechanochemical synthesis are introduced. Consolidation techniques used to make bulk magnets from the particle precursors are also discussed including spark plasma sintering (SPS), inductive heating compaction (IHC), shock wave compaction (SWC), combustion given compaction (CDC), and high-pressure warm compaction (HPWC). The structural and magnetic properties of both R-Co and R-Co/Fe are discussed for both isotropic and anisotropic magnets. The magnetic properties of single phase isotropic and anisotropic R-Fe-B nanostructural magnets are discussed together with R-Fe-B/Fe(Co) magnets composed of a fine mixture of exchange-coupled magnetically soft and hard grains.
[1] Gutfleisch O , Willard M A , E Brück, et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7):821-842.[2]US DOE (U.S. Department of Energy). 2010. Critical materials strategy. P10, Washington, DC: U.S. Department of Energy.[3]Stone, R.As China's rare earth R&D becomes ever more rarefied,2009.[4]tremble.Science, 325 (5946), 1336-1337.[5]Service, Robert, F. Chinese Policies Could Pinch U.S. Efforts to Make Electric Vehicles[J]. Science, 2010,329 (5990):377-377.[6]Strnat, K. A Family of New Cobalt‐Base Permanent Magnet Materials[J]. Journal of Applied Physics, 1967, 38(3):1001-1002.[7]Ojima T, Tomizawa S, Yoneyama T,Hori T. Magnetic properties of a new type of rare-earth cobalt magnets Sm2(Co,Cu, Fe, M)17[J].IEEE Transactions on Magnetics,1997,13 (5):1317-1319.[8] Sagawa M , Fujimura S , Togawa N , et al. New material for permanent magnets on a base of Nd and Fe (invited)[J]. Journal of Applied Physics, 1984, 55(6):2083-2087.[9]Croat J J , Herbst J F , Lee R W , et al. Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets (invited)[J]. Journal of Applied Physics, 1984, 55(5):2078-2082.[10] Hadjipanayis G C , Hazelton R C , Lawless K R . Cobalt‐free permanent magnet materials based on iron‐rare‐earth alloys (invited)[J]. Journal of Applied Physics, 1984, 55(6):2073-2077.[11] Sun H , Coey J M D , Otani Y , et al. Magnetic properties of a new series of rare-earth iron nitrides: R2Fe17Ny(y approximately 2.6)[J]. Journal of Physics Condensed Matter, 1999, 2(30):6465-6470.[12] Qi Q N , M.D. Kuz'min, Hong S , et al. Crystal fields and spin reorientation transitions in R2Fe17C3-δ (R≡Sm, Er, Tm)[J]. Journal of Alloys & Compounds, 1992, 182(2):313–319.[13] Qi Q N , Sun H , Skomski R , et al. magnetization and fe hyperfine fields in y2fet7z3 fi(z =h, c, or n) interstitial compounds[J]. Physical Review B, 1992, 45(21):12278-12286.[14]Jinbo, Yang, Weihua,等. Ab initio calculation of interstitial-atom effects in YFe10Mo2X (X=E,H,B,C,N,O,F)[J]. Physical Review B, 1997,56 (24):15647-15653.[15]Mü ller, K H, Dunlop, J, Handstein, A, Gebel, B,Wendhausen, P . Permanent magnet properties of Sm3(Fe0.93Ti0.07)29X y (X=C or N)[J].Journal of magnetism andmagneticmaterials,1996,157(158):117-118.[16] Rao K V S R , Markandeyulu G , Suresh K G , et al. Recent advances in 2 : 17 and 3 : 29 permanent magnet materials[J]. Bulletin of Materials Science, 1999, 22(3):509-517.[17]Kittel, Charles. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles[J].Physical Review,1946,70(11):965-971.[18]Koon, N.C.,Das, B.N. Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05[J].Applied Physics Letters,1981,39(10):840-842.[19]Coehoorn, R , De Mooij, D ,de Waard, C d. Meltspun permanent magnet materials containing Fe3B as the main phase[J].Journal of Magnetism and Magnetic Materials, 1989,80 (1):101-104.[20] Yue M , Zhang J , Meng T , et al. Microstructure and magnetic properties of isotropic bulk NdxFe94-xB6 (x=6,8,10) nanocomposite magnets prepared by spark plasma sintering[J]. Journal of Applied Physics, 2006, 99(8):08B502.[21] Ding J , Mccormick P G , Street R . Structure and magnetic properties of mechanically alloyed SmxCo1x[J]. Journal of Alloys & Compounds, 2010, 191(2):197-201.[22] Liu W , Z D Zhang, Liu J P ,Chen L J, He L L, Liu Y , Sun X K,Sellmyer D J. Exchange Coupling and Remanence Enhancement in Nanocomposite Multilayer Magnets[J]. Advanced Materials, 2010, 14(24):1832-1834.[23] Kneller E F , Hawig R . The exchange-spring magnet: a new material principle for permanent magnets[J]. IEEE Transactions on Magnetics, 1991, 27(4):3588-3560.[24]Skomski R,Coey J.Giant energy product in nanostructured two-phase magnets[J].Physical Review B, 1993,48(21):15812-15816.[25] Jones N . Materials science: The pull of stronger magnets [J]. Nature News, 2011, 472(7341):22-23.[26] Cui W B , Takahashi Y K , Hono K . Nd2Fe14B/FeCo Anisotropic Nanocomposite Films with a Large Maximum Energy Product[J]. Advanced Materials, 2012,24(48):6530-6535.[27]Neu V , Sawatzki S, Kopte M, Mickel C,Schultz L.Fully epitaxial, exchange coupled SmCo/Fe multilayers with energy densities above 400 kJ/m[J].Magnetics IEEE Transactions on,2012,48(11): 3599-3602.[28] Leineweber T , H Kronmüller. Micromagnetic examination of exchange coupled ferromagnetic nanolayers[J]. Journal of Magnetism & Magnetic Materials, 1997, 176(2-3):145-154.[29] Sabiryanov R F , Jaswal S S . Magnetic properties of hard/soft composites: SmCo5/Co1-xFex[J]. Physical Review B, 1998, 58(18):12071-12074.[30]Chen, Zhongmin, Meng-Burany, et al. High coercivity in nanostructured PrCo5-based powders produced by mechanical milling and. [J]. Applied Physics Letters, 1999, 75(20):3165-3167.[31]Sun, S H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles[J].Advanced Materials,2006,18 (4): 393-403.[32] Uehara M . Microstructure and permanent magnet properties of a perpendicular anisotropic NdFeB/Ta multilayered thin film prepared by magnetron sputtering[J]. Journal of Magnetism & Magnetic Materials, 2004, 284(6):281-286.[33] Nakano M , Katoh R , Fukunaga H , Fukunaga H,Tutumi S. Fabrication of Nd-Fe-B thick-film magnets by high-speed PLD method[J]. IEEE Trans Magn, 2003, 39(5):2863-2865.[34] Hadjipanayis G C , Hazelton R C , Lawless K R . New iron-rare-earth based permanent magnet materials[J]. Applied Physics Letters, 1983, 43(8):797-799.[35] Liu R M , Yue M , Na R , Deng Y W, Zhang D T, Liu W Q,Zhang J X.Ultrahigh coercivity in ternary Tb-Fe-B melt-spun ribbons[J]. Journal of Applied Physics, 2011, 109(7):873-57.[36] Pinkerton F E . High coercivity in melt-spun Dy-Fe-B and Tb-Fe-B alloys[J]. Journal of Magnetism & Magnetic Materials, 1986, 54(57):579-582.[37] Zhang W Y , Zhang X D , Yang Y C , et al. Effect of Cu substitution on structure and magnetic properties of anisotropic SmCo ribbons[J]. Journal of Alloys & Compounds, 2003, 353(1-2):274-277.[38] Yan A , Bollero A , Muller K H ,Gutfleisch O. Fast development of high coercivity in melt-spun Sm(Co,Fe,Cu,Zr)z magnets[J]. Applied Physics Letters, 2002, 80(7):1243-1245.[39]McCallum, R W,Kadin A M, Clemente G B, Keem J E. High performance isotropic permanent magnet based on Nd-Fe-B[J].Journal of Applied Physics,1987, 61(8):3577-3577.[40]F, Matsumoto, H, et al. Effects of silicon and aluminum additions on magnetic properties of rapidly quenched Nd‐Fe‐B permanent magnets[J]. Journal of Applied Physics, 1988, 63(8):3507-3509.[41] Hadjipanayis G C , Gong W . Magnetic hysteresis in melt-spun Nd-Fe-Al-B-Si alloys with high remanence[J]. Journal of Applied Physics, 1988, 64(10):5559-5561.[42] Wang Z , Zhou S , Zhang M , et al. Effects of as-quenched structures on the phase transformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons[J]. Journal of Applied Physics, 1999,86(12):7010-7016.[43]Zhang, Jian Zhang, Shao-ying Zhang, Hong-wei Shen, Bao-gen Li, Bao-he. Structure and magnetic properties of SmxCo5/α-Fe (x=0.65–1.3) prepared by mechanical milling and subsequent annealing[J]. Journal of Applied Physics, 2001, 89(5):2857-2860.[44]Ding J, McCormick P ,Street R. A study of Sm13(Co1?xFex)87 prepared by mechanical alloying[J].Journal of magnetism and magnetic materials,1994,135 (2):200-204.[45] Ito M , Majima K , Umemoto T , et al. Magnetic properties and microstructure of SmCo 5+α-Fe nanocomposite magnets prepared by mechanical alloying[J]. Journal of Alloys & Compounds, 2001, 329(1):272-277.[46] Rong C , Ying Z , Poudyal N , et al. Fabrication of bulk nanocomposite magnets via severe plastic deformation and warm compaction[J]. Applied Physics Letters, 2010, 96(10):102513.[47] Xiong X Y , Rong C B , Rubanov S , et al. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction[J]. Journal of Magnetism & Magnetic Materials, 2011, 323(22):2855-2858.[48] Rong C , Zhang Y , Poudyal N , et al. Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets[J]. Journal of Materials Science, 2011, 46(18):6065-6074.[49] Sun S , Murray C B , Weller D , et al. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices[J]. Science,2000,287(5460):1989-1992.[50]Hou Y , Xu Z, Peng S, Rong C, Liu J P ,Sun S. A Facile Synthesis of SmCo5 Magnets from Core/Shell Co/Sm2O3 Nanoparticles. Advanced Materials, 2007,19 (20):3349-3352.[51] Chakka V M , Altuncevahir B , Jin Z Q , et al. Magnetic nanoparticles produced by surfactant-assisted ball milling[J]. Journal of Applied Physics, 2006, 99(8):08E912.[52] Wang Y , Li Y , Rong C , et al. Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling[J]. Nanotechnology, 2007, 18(46):465701.[53] Cui B Z , Gabay A M , Li W F , et al. Anisotropic SmCo5 nanoflakes by surfactant-assisted high energy ball milling[J]. Journal of Applied Physics, 2010, 107(9):09A721-09A721-3.[54]B.Z. Cui and W.F. Li and G.C. Hadjipanayis. Formation of SmCo5 single-crystal submicron flakes and textured polycrystalline nanoflakes[J]. Acta Materialia, 2011,59 (2):563-571.[55] Cui B Z , Zheng L Y , Waryoba D , et al. Anisotropic SmCo5 flakes and nanocrystalline particles by high energy ball milling[J]. Journal of Applied Physics, 2011, 109(7):07A728.[56] Zheng L , Cui B , Akdogan N G , et al. Influence of octanoic acid on SmCo 5 nanoflakes prepared by surfactant-assisted high-energy ball milling[J]. Journal of Alloys and Compounds, 2010, 504(504):391-394.[57] Zheng L , Cui B , Hadjipanayis G C . Effect of different surfactants on the formation and morphology of SmCo 5 nanoflakes[J]. Acta Materialia, 2011, 59(17):6772-6782.[58] Zheng L , Gabay A M , Li W , et al. Influence of the type of surfactant and hot compaction on the magnetic properties of SmCo5 nanoflakes[J]. Journal of Applied Physics, 2011, 109(7):07A721.[59] Yue M , Pan R , Liu R M , et al. Crystallographic alignment evolution and magnetic properties of Nd-Fe-B nanoflakes prepared by surfactant-assisted ball milling[J]. Journal of Applied Physics, 2012, 111(7):07A732.