Abstract:Microstructure of H220BD steel was observed by OM with different annealing temperature and different dew point conditions in furnace, surface morphology was observed by OM and SEM with different different dew point, its mechanical properties and aging performance with different annealing temperature and different dew point were tested. The results show that the dew point in the furnace has no effect on the surface morphology and grain size. When the dew point in the furnace is low, the degree of decarburization is low, BH value is high, and aging performance is poor. When the dew point in the furnace increases, aging performance is good, but BH value decreases accordingly. Grain size and BH value increase as annealing temperature increases, when the annealing temperature is 820 ℃, dew point in the furnace is -20℃, BH value and aging performance can reach the best, and aging performance can meet more than six months.
[1] 陈继平,康永林,郝英敏,等. Ti+Nb超低碳烘烤硬化钢的组织和性能研究[J]. 材料热处理技术. 2009, 38(6): 13-16.Chen Ji-pingg, KANG Yong-lin, HAO Ying-min, et al. Research on microstructure and properties of Ti+Nb ultra-low carbon bake-hardening steel[J]. Materials & Heat Treatment. 2009, 38(6): 13-16.[2] 刘光明,康永林,陈继平,等.390MPa级 Ti+Nb超低碳高强度 BH钢组织性能研究[J]. 材料工程. 2010, 4: 5-9.LIU Guang-ming, KANG Yong-lin, CHEN Ji-ping,et al. Microstructure and mechanical property of 390MPa grade Ti+Nb bearing high strength Ultra low carbon bake hardening sheet steel[J]. Materials Engineering. 2010, 4: 5-9.[3] 段小平,胡吟萍. 烘烤条件对超低碳烘烤硬化钢BH值的影响[J]. 武汉工程职业技术学院学报. 2009,21(4): 8-10.DUAN Xiao-ping, HU Yin-ping. Effect of baking hardening condition on BH value of low carbon baking hardening steel[J]. Journal ofWuhan Engineering Institute. 2009,21(4): 8-10.[4] 关小军,周家娟,陈晓闽,等.不同冷轧状态的 ELC-BH钢板连续退火再结晶规律[J]. 金属热处理. 2003,28(2): 31-33.GUAN Xiao-jun, ZHOU Jia-juan, CHEN Xiao-min, et al. Effect of cold -rolling reduction on recrystallization of extra low-carbonand high strength bake-hardening steel sheet during continuous annealing [J].Metal & Heat Treatment. 2003,28(2): 31-33.[5] 张理扬, 张利祥. 烘烤硬化钢热镀锌镀层450℃合金化退火模拟[J]. 钢铁研究学报. 2012, 24(9): 33-39.ZHANG Li-yang, ZHANG Li-xiang. Alloying annealing simulation of the galvannealing of hot-dip galvanized bake-hardenable steel at 450℃ [J]. Journal of Iron and Steel Research. 2012, 24(9): 33-39.[6] 崔岩, 王瑞珍, 魏星, 等. 连续退火工艺对超低碳烘烤硬化钢烘烤硬化性能的影响[J]. 钢铁. 2010, 45(9): 86-90.CUI Yan, WANG Rui-zhen, Wei Xing, et al. Effect of continuous annealing on bake hardening property of ultra-low carbon steel[J]. Iron and Steel. 2010, 45(9): 86-90.[7] 方学华, 王化宇, 亢占英. 不同成分体系镀锌烘烤硬化钢特点[J]. 宝钢技术. 2009, 4: 67-70.FANG Xue-hua, WANG Hua-yu, KANG-Zhanying, et al. Characteristic of hot-dip galvanized BH steel with different chemical composition [J]. Baosteel Technology. 2009, 4: 67-70.[8] 赵虎, 康永林, 刘光明, 等. 超低碳烘烤硬化钢板的织构[J]. 钢铁研究学报. 2007, 19(11): 47-50.ZHAO Hu, KANG Yong-lin,LIU Guang-ming, et al. Texture in extra-low carbon bake hardened steel [J]. Journal of Iron and Steel Research. 2007, 19(11): 47-50.[9] 殷俊, 王国清, 范宝明, 等.提高冷轧高强度钢板屈服强度控制水平的研究[J]. 宝钢技术. 2006, 1: 69-72.YIN Jun, WANG Guo-qing, FAN Bao-ming. et al. Research on improving high strength steel’s yield strength[J]. Baosteel Technology. 2006, 1: 69-72.[10] 赵虎, 康永林, 江海涛, 等. 终轧温度对超低碳BH钢板组织和性能的影响[J].汽车工艺与材料. 2016, 11: 6-8.ZHAO Hu, KANG Yong-lin, J IANG Hai-tao, et al. Effect of hot rolling finishing temperature on microstructures and properties of extra low carbon bake hardening steel[J].Automobile Technology & Material. 2016, 11: 6-8.[11] 王健, 房锦超, 张玉文. 热轧双相钢DP600关键工艺技术的研究[J]. 中国冶金. 2014, 24(11): 16.WANG Jiang, FANG Jin-chao, ZHANG Yu-wen. Study on key technology of DP600 hot rolling double-phase steel[J]. China metallurgy. 2014, 24(11): 16.[12] 吴学亮,史文,陈超,等. 退火温度和时间对新型超低碳BH钢再结晶织构的影响[J]. 钢铁. 2010, 45(2): 74-77.WU Xue-liang, SHI Wen, CHEN Chao, et al. Influence of annealing temperature and time on recrystallization texture of extra-low carbon BH steel[J]. Iron and Steel. 2010, 45(2): 74-77.[13] 袁训华, 江社明, 张启富. BH390钢热镀锌抑制层及其合金化镀层界面结构[J].材料热处理学报. 2011, 32(5): 127-131.YAUN Xun-hua, JIANG She-ming, ZHANG Qi-fu. Formation and interface structure of inhibition layers in hot-dip galvanized coating on steel BH[J].Transactions of Materials and Heat Treatment[J]. 2011, 32(5): 127-131.[14] 王华,史文,何燕霖,等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究[J]. 金属学报. 2011, 47(3): 263-268.WANG Hua, SHI Wen, HE Yan-lin, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels[J]. Acta Metallurgica Sinica. 2011, 47(3): 263-268.[15] 金兰, 李维娟, 张永衡. 预变形量对超低碳钢烘烤硬化性能的影响[J]. 机械工程材料. 2012, 36(12): 37-39JIN Lan, LI Wei-juan, ZHANG Yong-heng. Effect of degree of pre-deformation on bake hardening property of ultra-low carbon steel. 2012, 36(12): 37-39[16] 佟皑男, 缪心雷, 吴庆美, 等. 一种连续热镀锌烘烤硬化钢板提升耐时效性能的生产方法[J].发明专利, 2022: ZL202010573401.1TONG Ainan, MIAO Xin-lei, WU Qing-mei, et al. The invention relates to a production method of continuous hot dip galvanized baking hardened steel plate to improve the aging resistance. Patent for Invention. 2022: ZL202010573401.1