Abstract:As a fascinating and widely used polymer, polyimide (PI) has become a new research hotspot and drawn broad interdisciplinary attention as a visible-light-responsive photocatalyst. This is due to its appealing electronic band structure and high physicochemical stability. This critical review summarizes a panorama of the latest progress related to the design and construction of PI and PI based composite photocatalyst, including (1) graphitic carbon nitride (g-C3N4) based photocatalytic structure in polyimide, (2) nanoarchitecture design of bare polyimide and its photocatalytic ability, (3) modification of PI and well-matched energy levels of another semiconductor to form heterojunction nanostructure. In the review, there will be also theoretically discussed the band structures, electronic properties, optical absorption, and interfacial charge transfer in PI-based heterostructures nanohybrids.It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of PI based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties
[1]Dai L, Chang D W, Baek J B, et al.Carbon nanomaterials for advanced energy conversion and storage[J].Small, 2012, 8(8):1130-66
[2]Ong W J, Tan L L, Ng Y H, et al.Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?[J].Chem Rev, 2016, 116(12):7159-329
[3]Wang D, Saleh N B, Sun W, et al.Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications[J].Environ Sci Technol, 2019, 53(13):7265-7287
[4]Wang Q, Hisatomi T, Jia Q, et al.Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1[J].Nat Mater, 2016, 15(6):611-5
[5]Yuan Y J, Lu H W, Yu Z T, et al.Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production[J].ChemSusChem, 2015, 8(24):4113-27
[6]White J L, Baruch M F, Pander Iii J E, et al.Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes[J].Chem Rev, 2015, 115(23):12888-935
[7]Morris A J, Meyer G J, Fujita E.Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels[J].Acc Chem Res, 2009, 42(12):1983-94
[8]Zhou K-G, Mcmanus D, Prestat E, et al.Self-catalytic membrane photo-reactor made of carbon nitride nanosheets[J].Journal of Materials Chemistry A, 2016, 4(30):11666-11671
[9]Wojtyla S, Macyk W, Baran T.Photosensitization of CuI - the role of visible light induced Cu(I)-- Cu(II) transition in photocatalytic degradation of organic pollutants and inactivation of microorganisms[J].Photochem Photobiol Sci, 2017, 16(7):1079-1087
[10]Gaya U I, Abdullah A H.Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals,progress and problems[J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1):1-12
[11]Li Q, Mahendra S, Lyon D Y, et al.Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J].Water Res, 2008, 42(18):4591-602
[12]Ruales-Lonfat C, Barona J F, Sienkiewicz A, et al.Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH[J]. Applied Catalysis B: Environmental, 2015, 166-167: 497-508.
[13]Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238(5358):37-8
[14]Fei J, Li J.Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis[J].Adv Mater, 2015, 27(2):314-9
[15]Wang L, Meng Y, Zhang C, et al.Improving Photovoltaic and Enzymatic Sensing Performance by Coupling a Core-Shell Au Nanorod@TiO2 Heterostructure with the Bioinspired l-DOPA Polymer[J].ACS Appl Mater Interfaces, 2019, 11(9):9394-9404
[16]Ma Y, Wang X, Jia Y, et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J].Chem Rev, 2014, 114(19):9987-10043
[17]Yang H G, Sun C H, Qiao S Z, et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature, 2008, 453(7195):638-41
[18]Li H, Zhou Q, Gao Y, et al.Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties[J].Nano Research, 2014, 8(3):900-906
[19]Xu F, Shen Y, Sun L, et al.Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst[J]. Nanoscale, 2011, 3(12).
[20]Yan X, Li J, Ai T, et al.Few layer g-C3N4 decorated flower-like ZnO for visible light photocatalytic reduction of Cr(VI)[J].Journal of Materials Science: Materials in Electronics, 2019, 30(9):8577-8584
[21]Bai X, Wang L, Zong R, et al.Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization[J].Langmuir, 2013, 29(9):3097-3105
[22]Zhou X, Xu Q, Lei W, et al.Origin of tunable photocatalytic selectivity of well-defined alpha-Fe(2)O(3) nanocrystals[J].Small, 2014, 10(4):674-9
[23]Li C, Chen G, Sun J, et al.A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production[J].ACS Appl Mater Interfaces, 2015, 7(46):25716-24
[24]Sun S, Wang W, Jiang D, et al.Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance[J].Nano Research, 2014, 7(10):1497-1506
[25]Zhu J, Fan F, Chen R, et al.Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst[J].Angew Chem Int Ed Engl, 2015, 54(31):9111-4
[26]Akimov A V, Asahi R, Jinnouchi R, et al.What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics[J].J Am Chem Soc, 2015, 137(35):11517-25
[27]Yu X, Liu G, Li W, et al.Mesocrystalline Ta2O5 nanosheets supported Pd Pt nanoparticles for efficient photocatalytic hydrogen production[J].International Journal of Hydrogen Energy, 2018, 43(17):8232-8242
[28]Chen S, Shen S, Liu G, et al.Interface engineering of a CoO(x)Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation[J].Angew Chem Int Ed Engl, 2015, 54(10):3047-51
[29]Nakada A, Nakashima T, Sekizawa K, et al.Visible-light-driven CO2 reduction on a hybrid photocatalyst consisting of a Ru(ii) binuclear complex and a Ag-loaded TaON in aqueous solutions[J].Chem Sci, 2016, 7(7):4364-4371
[30]Sun Y, Cheng H, Gao S, et al.Inside Cover: Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting (AngewChem. Int. Ed. 352012)[J].Angewandte Chemie International Edition, 2012, 51(35):8668-8668
[31]Zhong X, Wang G, Papandrea B, et al.Reduced graphene oxidesilicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability[J].Nano Research, 2015, 8(9):2850-2858
[32]Tan L-L, Ong W-J, Chai S-P, et al.Visible-light-active oxygen-rich TiO 2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction[J]. Applied Catalysis B: Environmental, 2015, 179: 160-170.
[33]Schneider J, Matsuoka M, Takeuchi M, et al.Understanding TiO2 photocatalysis: mechanisms and materials[J].Chem Rev, 2014, 114(19):9919-86
[34]Huan-Huan W, Chun-Cheng C, Ying-Ping H, et al.Bismuth Oxybromide with High Adsorption Capacity and Photocatalytic Activity Synthesized by Reverse Microemulsion Method[J].Nanoscience and Nanotechnology Letters, 2018, 10(1):94-101
[35]Han J, Jeong H, Kim H-D, et al.Erbium-Doped TiO2 Hollow Sphere as a Visible-Light-Sensitive Photocatalyst[J].Nanoscience and Nanotechnology Letters, 2018, 10(8):1152-1156
[36]Bora T, Dutta J.Plasmonic Photocatalyst Design: Metal-Semiconductor Junction Affecting Photocatalytic Efficiency[J].J Nanosci Nanotechnol, 2019, 19(1):383-388
[37]Li Z, Huang F, Mo H, et al.Two-Step Solvothermal Method Assisted by Ultrasonic Exfoliation to Construct Nb3O7FMoSe2 Hybrids with Enhanced Photocatalytic Activity[J].Nanoscience and Nanotechnology Letters, 2018, 10(8):1065-1071
[38]Qu Y, Duan X.Progress,challenge and perspective of heterogeneous photocatalysts[J].Chem Soc Rev, 2013, 42(7):2568-80
[39]Naseri A, Samadi M, Pourjavadi A, et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J].Journal of Materials Chemistry A, 2017, 5(45):23406-23433
[40]Wang X, Blechert S, Antonietti M.Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis[J].ACS Catalysis, 2012, 2(8):1596-1606
[41]Dong G, Ho W, Li Y, et al.Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal[J]. Applied Catalysis B: Environmental, 2015, 174-175: 477-485.
[42]Li G, Lian Z, Wang W, et al.Nanotube-confinement induced size-controllable g-C 3 N 4 quantum dots modified single-crystalline TiO 2 nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19: 446-454.
[43]Liang Q, Li Z, Huang Z-H, et al.Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production[J].Advanced Functional Materials, 2015, 25(44):6885-6892
[44]Yang D, Jiang T, Wu T, et al.Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C3N4[J].Catalysis Science & Technology, 2016, 6(1):193-200
[45]Zhang M, Jiang W, Liu D, et al.Photodegradation of phenol via C 3 N 4 -agar hybrid hydrogel 3D photocatalysts with free separation[J]. Applied Catalysis B: Environmental, 2016, 183: 263-268.
[46]Liu J, Wang H, Chen Z P, et al.Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application[J].Adv Mater, 2015, 27(4):712-8
[47]Zhang Z, Jiang D, Li D, et al.Construction of SnNb 2 O 6 nanosheet/g-C 3 N 4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: Synergistic effect and mechanism insight[J]. Applied Catalysis B: Environmental, 2016, 183: 113-123.
[48]Xiao J, Xie Y, Nawaz F, et al.Dramatic coupling of visible light with ozone on honeycomb-like porous g-C 3 N 4 towards superior oxidation of water pollutants[J]. Applied Catalysis B: Environmental, 2016, 183: 417-425.
[49]Cui Y, Zhang G, Lin Z, et al.Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Applied Catalysis B: Environmental, 2016, 181: 413-419.
[50]Huang H, Yang S, Vajtai R, et al.Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts[J].Adv Mater, 2014, 26(30):5160-5
[51]Wang X, Maeda K, Thomas A, et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nat Mater, 2009, 8(1):76-80
[52]Hong Y, Jiang Y, Li C, et al.In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants[J]. Applied Catalysis B: Environmental, 2016, 180: 663-673.
[53]Yan J, Wu H, Chen H, et al.Fabrication of TiO 2 /C 3 N 4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting[J]. Applied Catalysis B: Environmental, 2016, 191: 130-137.
[54]Wang Y, Tian Y, Yan L, et al.DFT Study on Sulfur-Doped g-C3N4 Nanosheets as a Photocatalyst for CO2 Reduction Reaction[J].The Journal of Physical Chemistry C, 2018, 122(14):7712-7719
[55]Miao D, Cavusoglu G, Lichtenberg H, et al.Water-gas shift reaction over platinum/strontium apatite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 587-596.
[56]Yang J, Chu S, Guo Y, et al.Hyperbranched polymeric N-oxide: a novel kind of metal-free photocatalyst[J].Chem Commun (Camb), 2012, 48(29):3533-5
[57]Jia J, Li D, Wan J, et al.Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 162-169.
[58]Baldissarelli V Z, De Souza T, Andrade L, et al.Preparation and photocatalytic activity of TiO 2 -exfoliated graphite oxide composite using an ecofriendly graphite oxidation method[J]. Applied Surface Science, 2015, 359: 868-874.
[59]Kim T-W, Park M, Kim H Y, et al.Preparation of flower-like TiO 2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants[J]. Journal of Solid State Chemistry, 2016, 239: 91-98.
[60]Maceiras A, G?ren A, Sencadas V, et al.Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes[J]. Journal of Electroanalytical Chemistry, 2016, 778: 57-65.
[61]Abouzari-Lotf E, Ghassemi H, Mehdipour-Ataei S, et al.Phosphonated polyimides: Enhancement of proton conductivity at high temperatures and low humidity[J]. Journal of Membrane Science, 2016, 516: 74-82.
[62]Skotadis E, Mousadakos D, Katsabrokou K, et al.Flexible polyimide chemical sensors using platinum nanoparticles[J]. Sensors and Actuators B: Chemical, 2013, 189: 106-112.
[63]Chu S, Wang Y, Guo Y, et al.Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water[J]. Journal of Materials Chemistry, 2012, 22(31).
[64]Teter D M, Hemley R J.Low-Compressibility Carbon Nitrides[J].Science, 1996, 271(5245):53-55
[65]Zhao Y, Zhang J, Qu L.Graphitic Carbon NitrideGraphene Hybrids as New Active Materials for Energy Conversion and Storage[J].ChemNanoMat, 2015, 1(5):298-318
[66]Zheng Y, Lin L, Wang B, et al.Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis[J].Angew Chem Int Ed Engl, 2015, 54(44):12868-84
[67]Kroke E, Schwarz M, Horath-Bordon E, et al.Tri-s-triazine derivativesPart I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3],M?=?Li,Na,K,Rb,Cs,manuscript in preparation[J].New Journal of Chemistry, 2002, 26(5):508-512
[68]Wang W, Yu J C, Xia D, et al.Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light[J].Environ Sci Technol, 2013, 47(15):8724-32
[69]Guo Y, Chu S, Yan S, et al.Developing a polymeric semiconductor photocatalyst with visible light response[J].Chem Commun (Camb), 2010, 46(39):7325-7
[70]Maeda K, Domen K.New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light[J].The Journal of Physical Chemistry C, 2007, 111(22):7851-7861
[71]Chu S, Wang Y, Guo Y, et al.Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property[J].ACS Catalysis, 2013, 3(5):912-919
[72]Zheng D, Huang C, Wang X.Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis[J].Nanoscale, 2015, 7(2):465-70
[73]Chu S, Wang C, Yang Y, et al.Developing high-efficiency π conjugated polymer semiconductor for photocatalytic degradation of dyes under visible light irradiation[J].RSC Adv., 2014, 4(100):57153-57158
[74]Wang C, Guo Y, Yang Y, et al.Sulfur-doped polyimide photocatalyst with enhanced photocatalytic activity under visible light irradiation[J].ACS Appl Mater Interfaces, 2014, 6(6):4321-8
[75]Cui Z, Zhou J, Liu T, et al.Porphyrin-containing Polyimide with Enhanced Light Absorption and Photocatalysis Activity[J].Chem Asian J, 2019, 14(12):2138-2148
[76]Wang H, Zhang L, Chen Z, et al.Semiconductor heterojunction photocatalysts: design,construction,and photocatalytic performances[J].Chem Soc Rev, 2014, 43(15):5234-44
[77]Wang Y, Wang Q, Zhan X, et al.Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review[J].Nanoscale, 2013, 5(18):8326-39
[78]Li J-Y, Jiang X, Lin L, et al.Improving the photocatalytic performance of polyimide by constructing an inorganic-organic hybrid ZnO-polyimide core–shell structure[J]. Journal of Molecular Catalysis A: Chemical, 2015, 406: 46-50.
[79]Bamwenda G R, Arakawa H.The visible light induced photocatalytic activity of tungsten trioxide powders[J].Applied Catalysis A: General, 2001, 210(1-2):181-191
[80]Katsumata K, Motoyoshi R, Matsushita N, et al.Preparation of graphitic carbon nitride (g-C(3)N(4))/WO(3) composites and enhanced visible-light-driven photodegradation of acetaldehyde gas[J]. J Hazard Mater, 2013, 260: 475-82.
[81]Dasgupta J, Sikder J, Chakraborty S, et al.Microwave-Assisted Modified Polyimide Synthesis: A Facile Route to the Enhancement of Visible-Light-Induced Photocatalytic Performance for Dye Degradation[J].ACS Sustainable Chemistry & Engineering, 2017, 5(8):6817-6826
[82]Meng P, Heng H, Sun Y, et al.In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 428: 1130-1140.
[83]Heng H, Gan Q, Meng P, et al.H3PW12O40TiO2–In2O3: a visible light driven type-II heterojunction photocatalyst for the photocatalytic degradation of imidacloprid[J].RSC Advances, 2016, 6(77):73301-73307
[84]Wang S S, Yang G Y.Recent advances in polyoxometalate-catalyzed reactions[J].Chem Rev, 2015, 115(11):4893-962
[85]Meng P, Heng H, Sun Y, et al.Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst[J]. Applied Catalysis B: Environmental, 2018, 226: 487-498.
[86]Greiner M T, Chai L, Helander M G, et al.Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies[J].Advanced Functional Materials, 2012, 22(21):4557-4568
[87]Kr?ger M, Hamwi S, Meyer J, et al.P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide[J].Organic Electronics, 2009, 10(5):932-938
[88]Ma C, Zhou J, Zhu H, et al.Constructing a High-Efficiency MoO3Polyimide Hybrid Photocatalyst Based on Strong Interfacial Interaction[J].ACS Appl Mater Interfaces, 2015, 7(27):14628-37
[89]Ma C, Zhou J, Cui Z, et al.In situ growth MoO3 nanoflake on conjugated polymer: An advanced photocatalyst for hydrogen evolution from water solution under solar light[J]. Solar Energy Materials and Solar Cells, 2016, 150: 102-111.
[90]Wang L, Wang W, Shang M, et al.Enhanced photocatalytic hydrogen evolution under visible light over Cd1?xZnxS solid solution with cubic zinc blend phase[J].International Journal of Hydrogen Energy, 2010, 35(1):19-25
[91]Garaje S N, Apte S K, Naik S D, et al.Template-free synthesis of nanostructured Cd(x)Zn(1-x)S with tunable band structure for H2 production and organic dye degradation using solar light[J].Environ Sci Technol, 2013, 47(12):6664-72
[92]Yan T, Li M, Wang X, et al.Facile preparation of novel organic–inorganic PI/Zn0.25Cd0.75S composite for enhanced visible light photocatalytic performance[J]. Applied Surface Science, 2015, 340: 102-112.
[93]Heng H, Yang J, Yin Y, et al.Effect of precursor types on the performance of polyimide: A metal-free visible-light-driven photocatalyst for effective photocatalytic degradation of pollutants[J]. Catalysis Today, 2019.