Abstract:This article uses discharge plasma sintering method to prepare (TiC+TiB)/TC4 composite materials. Firstly, the ball milling process was optimized, and the effect of sintering temperature on the phase composition, microstructure, and mechanical properties of titanium based composite materials was studied. The results indicate that the optimal ball milling parameter is 200r/min ball milling for 8 hours, which can adhere the reinforcing phase to the surface of the matrix powder without damaging the morphology of the particles. 5vol.% was prepared by in-situ synthesis using SPS at temperatures ranging from 1000 to 1150 ℃ (TiC+TiB)/TC4 composite material, TiCp and TiBw exhibit a quasi continuous network structure distributed at grain boundaries. As the SPS temperature increases, the strength and engineering strain of the composite material first increase and then decrease, reaching a maximum of 1722MPa and 28.31% at 1100 ℃, thus determining the optimal SPS temperature.
参考文献: [1] 张长江. (TiB+TiC)/Ti复合材料高温变形行为及组织性能研究[D]. 哈尔滨工业大学, 2013. [2] 易萌. (TiB+TiC)_TC4复合材料的热压反应烧结与服役效能研究 [D]. 江苏大学, 2018. [3] 黄玉东. 原位自生(TiB+TiC)...料的制备及热变形行为的研究[D]., 2020. [4] 徐欢. 增强体对原位自生(TiC+TiB)/Ti复合材料微观组织和力学性能的影响[D]. 上海交通大学, 2019. [5] 黄陆军. 增强体准连续网状分布 [D]. 哈尔滨工业大学, 2010. [6] 吴小红, 罗军明, 黄俊, 等. 微波烧结TiC/Ti6Al4V复合材料的高温氧化行为[J]. 复合材料学报, 2017,34(01):135-141. [7] 廖益龙. 微波烧结技术在Ti基复合材料制备中应用研究[J]. 科学技术创新, 2021(26):71-73. [8] CHAUDHARI R, BAURI R. A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer[J]. Journal of Alloys and Compounds, 2018,744:438-444. [9] FATTAHI M, DELBARI S A, SABAHI NAMINI A, et al. Characterization of triplet Ti–TiB–TiC composites: Comparison of in-situ formation and ex-situ addition of TiC[J]. Ceramics international, 2020,46(8):11726-11734.[10] Zi R Y, HAI X H, JIANG C, et al. Evaluation on dry sliding wear behavior of (TiB+TiC)/Ti-6Al-4V matrix composite[J]. International journal of precision engineering and manufacturing, 2017,18(8):1139-1146.[11] ZHENG B, DONG F, YUAN X, et al. Evaluation on tribological characteristics of (TiC+TiB)/Ti–6Al–4V composite in the range from 25 °C to 600 °C[J]. Wear, 2020,450-451:203256.[12] ZHANG C J, KONG F T, XIAO S L, et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Materials Science and Engineering: A, 2012,548:152-160.[13] YI Z, YUAN J, CHENG Y, et al. Microstructure and mechanical properties of Al 2 O 3 /Ti(C, N) ceramic tool materials by one-step and tw o-step microwave sintering[J]. Materials Science and Engineering: A, 2016,670:159-165.[14] 张翠娟, 彭新. 微波烧结制备Ti(C,N)基金属陶瓷[J]. 中国西部科技, 2015,14(11):88-90.[15] OZEROV M, KLIMOVA M, KOLESNIKOV A, et al. Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests[J]. Materials & Design, 2016,112:17-26.[16] PRIHODKO S V, SAVVAKIN D G, MARKOYSKY P E, et al. Diffusion bonding of TiC or TiB reinforced Ti-6Al-4V matrix composites to conventional Ti-6Al-4V alloy[J]. Science and technology of welding and joining, 2020,25(6):518-524.[17] ZHEREBTSOV S, OZEROV M, POVOLYAEVA E, et al. Effect of Hot Rolling on the Microstructure and Mechanical Properties of a Ti-15Mo/TiB Metal-Matrix Composite[J]. Metals (Basel ), 2020,10(1):40.[18] LIU Y, PAN Y, SUN J, et al. High Strength and High Wear‐Resistant Ti Composites Fabricated by Powder Metallurgy Pressureless Sintering[J]. Advanced materials technologies, 2022,7(11):2200219.[19] AN Q, WANG S, HUANG L, et al. Experimental and first-principles study on TiB/TiC interface in hybrid (TiB+TiC)/Ti6Al4V composite[J]. Ceramics International, 2022,48(15):22554-22559.[20] KIM I Y, CHOI B J, KIM Y J, et al. Friction and wear behavior of titanium matrix (TiB + TiC) composites[J]. Wear, 2011,271(9):1962-1965.[21] 于兰兰, 毛小南, 赵永庆, 等. 颗粒增强钛基复合材料研究新进展[J]. 稀有金属快报, 2006(04):1-5.[22] LUO G, CHEN J, QIN J, et al. Microstructure and strengthening mechanism of boride in-situ reinforced titanium matrix composites prepared by plasma activated sintering[J]. Ceramics international, 2021,47(11):15910-15922.[23] HAN C, BABICHEVA R, CHUA J D, et al. Microstructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders[J]. Additive manufacturing, 2020,36:101466.