Abstract:The accumulated residual stress in the process of metal additive manufacturing (MAM) has a significant impact on the dimensional stability, corrosion resistance, crack growth resistance and mechanical properties of MAM specimens. This paper mainly reviews the latest research results on the formation mechanism, influencing factors, test characterization, simulation and active regulation of residual stress in MAM components. Based on the current status of relevant technologies, the problems and difficulties of various residual stress testing, simulation, regulation and other technologies are summarized, and the future development trend is prospeced, so as to provide the latest information and knowledge about the MAM residual stress for researchers, in order to provide some practical enlightenment for the development of a systematic residual stress control technology.
[1]Parry L, Ashcroft IA, Wildman RD. Understanding the effectof laser scan strategy on residual stress in selective lasermelting through themo-mechanical simulation. AdditiveManufacturing 2016;12:1-15.[2]Hussein A, Hao L, Yan C, Everson R. Finite elementsimulation of the temperature and stress fields in singlelayers built without-support in selective laser meltingMater Des 2013:52:638-47.[3]Schoinochoritis B, Chantzis D, Salonitis k. Simulation ofmetallic powder bed additive manufacturing processes withthe finite element method: a criticalreview. Proc IME BJEngManufact 2016;231:96-117.[4]Ali H, Ghadbeigi H, Mumtaz k. Residual stress developmentin selective laser-melted Ti6Al4V: a parametric thermalmodelling approach.Int J Adv Manuf Technol2018,97:2621-33[5]P. Mercelis, J.P, Kruth, Residual stresses in selective laser sintering and selectivelaser melting, Rapid Prototyp. J. 12 (5) (2006) 254-265[6]A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remeltingand additive manufacturing, lasers in manufacturing 2011, in: Proceedings of theSixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1)(2011) [7]Y.J. Lu, S.Q. Wu, Y.L. Gan, T.T. Huang, C.G. Yang, JJ.Lin, J.X. Lin, Study on themicrostructure, mechanical property and residual stress of SLM Inconel-718 alloymanufactured by differing island scanning strategy, Opt. Laser Technol. 75 (2015)197-206[8]L.. Parry, LA. Ashcroft, RD. Wildman, Understanding the effect of laser scanstrategy on residual stress in selective laser melting through thermo-mechanicalsimulation, Addit Manuf. 12 (2016) 1-15[9]M.F, Zaeh, G. Branner, Investigations on residual stresses and deformations inselective laser melting, Prod. Eng. Res. Devel. 4 (1) (2010) 35-45, https://doi.org[10]P. Vora, K. Mumtaz, . Todd, N. Hopkinson, AlSi12 in-situ alloy formation andresidual stress reduction using anchorless selective laser melting, Addit. Manuf. 7(2015) 12-19[11]R.J. Williams, C.M. Davies, PA. Hooper, A pragmatic part scale model for residualstress and distortion prediction in powder bed fusion, Addit, Manuf 22 (2018)416-425[12]P Prabhakar, W.. Sames, R. Dehoff, S.S. Babu, Computational modeling of re-sidual stress formation during the electron beam melting process for Inconel 718.Addit. Manuf.7 (2015) 83-91[13]A.F. Zhang, B.L. Qi, B.F. Shi, D.C. L, Effect of curvature radius on the residualstress of thin-walled parts in laser direct forming, Int. J. Adv, Manuf. Technol. 79(1-4)(2015) 81-88[14]I. Yadroitsev, I. Yadroitsava, Evaluation of residual stress in stainless steel 316Land T-6Al-4V samples produced by selective laser melting, Virt Phys. Prototyp.10 (2) (2015) 67-76[15]J. Whiting, J. Fox, Characterization of feedstock in the powder bed fusion process:sources of variation in particle size distribution and the factors that influencethem, Interational Solid Freeform Fabrication Symposium Austin, Texas, USA.(2016).[16]A.K. Syed, B. Ahmad, H. Guo, T. Machry, D. Eatock, J. Meyer, ME. FitzpatrickX. Zhang, An experimental study of residual stress and direction-dependence offatigue crack growth behaviour in as-built and stress-relieved selective-lasermelted Ti-6Al-4V, Maer. Sci, Eng. A-Struct Mater, Properties MicrostructProcess.755 (2019) 246-257, [17]Eto, Y. Miura, J. Tani, T. Fujii, Effect of residual stress induced by pulsed-laserirradiation on initiation of chloride stress corrosion cracking in stainless steel.Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct Process. 590 (2014)433-439[18]NJ. Harrison, I. Todd, K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approachActa Mater.94 (2015) 59-68, [19].C. Rans, J. Michielssen, M. Walker, W.D. Wang, L. 't Hoen-Velterop, Beyond theorthogonal: on the influence of build orientation on fatigue crack growth in SLMTi-6A1-4V,Int. J.Fatigue 116 (2018) 344-354. [20]S. Leuders, M. Thone A. Riemer, T. Niendorf T. Troster, HA. Richard, HJ. Maier.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selectivelaser melting: fatigue resistance and crack growth performance, Int. J. Fatigue 48(2013) 300-307[21]B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, Analysis of fracturetoughness and crack propagation of Ti-6Al-4V produced by selective laser melting.Adv. Eng. Mater. 14 (1-2) (2012) 92-97[22]G.Q. Zhang, Y.Q. Yang, H. Lin, CH. Song, ZM Zhang, Study on the quality andperformance of CoCrMo alloy parts manufactured by selective laser melting, J.Mater. Eng. Perform. 26 (6) (2017) 2869-2877, https://doi.org/10.1007/s11665017-2716-5.[23]X.Y. Lou, M.A. Othon, RB. Rebak, Corrosion fatigue crack growth of laser addi.tively-manufactured 316L stainless steel in high temperature water, Corros. Sci.127 (2017) 120-130[24]A. Riemer, S. Leuders, M, Thone, HA. Richard, T. Troster, T. Niendorf, On thefatigue crack growth behavior in 316L stainless steel manufactured by selectivelaser melting, Eng. Fract. Mech, 120 (4) (2014) 15-25,[25]L.. Parry, IA. Ashcroft R.D. Wildman, Understanding the effect of laser scanstrategy on residual stress in selective laser melting through thermo-mechanicalsimulation, Addit Manuf, 12 (2016) 1-15, [26]Y.J. LU, S.Q. Wu, YL. Gan, T.T. Huang, C.G. Yang, J.J. Ln, J.X. Lin, Study on themicrostructure, mechanical property and residual stress of SLM Inconel-718 alloymanufactured by differing island scanning strategy, Opt. Laser Technol. 75 (2015)197-206.[27]I. Yadroitsev, I. Yadroitsava, Evaluation of residual stress in stainless steel 316Land T-6Al-4V samples produced by selective laser melting, Virt Phys. Prototyp10 (2) (2015) 67-76[28]M. Shiomi, K. Osakada K Nakamura, T. Yamashita, F. Abe, Residual stress withinmetallic model made by selective laser melting process, Cirp Ann-Manuf, Technol.53 (1) (2004) 195-198[29]B. Vrancken, V. Cain, R. Knutsen, J. Van Humbeeck, Residual stress via the con-tour method in compact tension specimens produced via selective laser melting.Scr.Mater, 87 (87) (2014) 29-32, [30]A. De, T. DebRoy, A perspective on residual stresses in welding, Sci. Technol.Weld. Join.16 (3) (2011) 204-208, [31] Kou, Welding Metallurgy, second ed., Hoboken, New Jersey, 2003, pp. 1-29.[32]P. Mercelis, J.P, Kruth, Residual stresses in selective laser sintering and selectivelaser melting, Rapid Prototyp. J. 12 (5) (2006) 254-265[33]Cottam R Wang J, Luzin V. Characterization ofmicrostructure and residual stress in a 3D H13 tool steelcomponent produced by additive manufacturing. J MaterRes 2014;29:1978-86.[34]Ghosh S, Choi j. Modeling and experimental verification oftransient/residual stresses and microstructure formation inmulti-layer laser aided DMD process. J Heat Tran2006;128:662-79.[35]Chen S, Zhang Y, Wu Q Gao H, Gao Z, Li x. Effect of solid-state phase transformation on residual stress of selectivelaser melting Ti6Al4V. Mater Sci Eng 2021;819:141299.[36]Bartlett L, Li X. An overview of residual stresses in metalpowder bed fusion.Addit Manuf 2019:27:131-49[37]Zhang B, Dembinski L, Coddet C. The study of the laserparameters and environment variables effect onmechanical properties of high compact parts elaborated byselective laser melting 316L powder. Mater Sci Eng A2013;584:21-31.[38]Simson T Emmel A Dwars A, Bohm J. Residual stressmeasurements on AISI 316L samples manufactured byselective laser melting. Addit Manuf 2017;17:183-9.[39]Vastola G, Zhang G, Pei ox, Zhang YW Controlling ofresidual stress in additive manufacturing of Ti6Al4V byfinite element modeling. Addit Manuf 2016;12:231-9.[40]Mukherjee T, Manvatkar V De A, DebRoy T. Mitigation ofthermal distortion during additive manufacturing. ScrMater 2017;127:79-83.[41]Hussein A Hao L, Yan C, Everson R. Finite elementsimulation of the temperature and stress fields in singlelayers built without-support in selective laser melting.Mater Des (1980-2015) 2013;52:638-47.[42]Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F.Residual stress within metallic model made by selectivelaser melting process. CIRP Ann Manuf Technol2004;53(1):195-198[43]Loh L-E, Chua C-K, Yeong W-Y, SongJ, Mapar M, Sing S-Let al Numerical investigation and an effective modelling onthe selective laser melting (SLM) process with aluminiumalloy 6061.Int ] Heat Mass Transf 2015;80:288-300.[44]Withers PJ, Bhadeshia HKDH. Residual stress. Part 1 measurement techniques. Mater. Sci. Tech.-Lond2001;17:355-65.[45]Huang X, Liu Z, Xie H. Recent progress in residual stressmeasurement techniques. Acta Mech Solida Sin2013;26(6):570-83.[46]Kandil FA, Lord jD, Fry AT, Grant PV. A review of residualstress measurement methods-a guide to techniqueselection.2001.[47]Hosseinzadeh F, KowalJ, Bouchard PJ. Towards goodpractice guidelines for the contour method of residualstress measurement.J Eng 2014,2014:453-68.[48]Rendler N VI. J. Hole-drilling strain-gage method ofmeasuring residual stresses. Exp Mech 1966;12:577-86.[49]Schajer GS. Advances in hole-drilling residual stressmeasurements.Exp Mech 2010;50:159-68.[50]Vrancken B, Cain V, Knutsen R, Van Humbeeck J. Residualstress via the contour method in compact tensionspecimens produced via selective laser melting. ScriptaMater 2014;87:29-32.[51]Totemeier TC, Wright JK. Residual stress determination inthermally sprayed coatings-a comparison of curvaturemodels and X-ray techniques. Surf Coating Technol2006;200:3955-62[52]G. Zhou, J. Kou, L Yao, W. Zhu, C. Kai, N. Tamura, Quantitative scanning lauediflraction microscopy: application to the study of 3D printed nickel-based su-peralloys, Quantum Beam Sci. 2 (2) (2018) 13[53]S. Shrestha T. Starr, K Chou, A study of keyhole porosity in selective lasermelting: single-track scanning with micro-CT analysis, J. Manuf. Sci. Eng.-Trans.ASMME 141 (7) (2019) 1,[54]J.L. Bartlett, B.P.Groom, J. Burdick, D. Henkel, X.D. Li, Revealing mechanisms ofresidual stress development in additive manufacturing via digital image correla-tion,Addit. Manuf.22 (2018) 1-12,[55]X. Lu. X. Lin, M. Chiumenti, M. Cervera, Y. Hu, X. Ji, L. Ma, W. Huang, In situmeasurements and thermo-mechanical simulation of Ti-6Al-4Y laser solidomming processes, Int. J. Mech, Sci. 153-154 (2019) 119-130, [56]S. Yoshida, T. Sasaki, M. Usui, S. Sakamoto, D. Gurney, IK. Park, Residual stressanalysis based on acoustic and optical methods, Materials (Basel) 9 (2) (2016)112[57]H Gaja, F, Liou, Defects monitoring of laser metal deposition using acousticemission sensor, Int. J. Adv Manuf, Technol. (2016) 1-14[58]Zhu Z, Chen B, Gou G, Zhang Z, Ma C, Gao w. Effect of solidstate phase transformation on the residual stress in multi-pass weld plates of S355J2w steel. Int J Mod Phys B2019;33:1940046.[59]Free JA, Goff RFP. Predicting residual stresses in multi-passweldments with the finite element method. Comput Struct1989;32:365-78.[60]Hibbitt HD,Marcal PV. A numerical, thermo-mechanicalmodel for the welding and subsequent loading of afabricated structure. Comput Struct 1973;3:1145-74.[61]Denlinger ER, Michaleris P. Effect of stress relaxation ondistortion in additive manufacturing process modelingAdditive Manufacturing 2016;12:51-9.[62]Chen S, Zhang Y, Wu Q, Gao H, Gao Z, Li x. Effect of solid-state phase transforation on residual stress of selectivelaser melting Ti6A14V. Mater Sci Eng 2021;819:141299.[63]A. De, T. DebRoy, A perspective on residual stresses in welding, Sci. Technol.Weld. Join.16 (3) (2011) 204-208[64]J. Zhang, Y. Zhang, WH. Lee, L. Wu, H-H. Choi, Y-G. Jung, A multi-scale multiphysics modeling framework of laser powder bed fusion additive manufacturingprocess, Met. Powder Rep. 73 (3) (2018) 151-157, [65]C. KOner, E Attar, P. Heinl, Mesoscopic simulation of selective beam meltingprocesses, J. Mater, Process. Technol. 211 (6) (2011) 978-987[66]Zeng K, Pal D, Gong H, Patil N, Stucker B. Comparison of3DSIM thermal modelling of selective laser melting usingnew dynamic meshing method to ANSYS.Mater. Sci. Tech.-Lond.2015,31:945-56[67]Khan K, De A Modelling of selective laser melting processwith adaptive remeshing. Sci Technol Weld Join2019;24:391-400.[68]Hodge NE, Ferencz RM, Vignes RM. Experimentalcomparison of residual stresses for a thermomechanicalmodel for the simulation of selective laser melting. AdditiveManufacturing 2016,12:159-68.[69]Bugatti M, Semeraro Q. Limitations of the inherent strainmethod in simulating powder bed fusion processes.Additive Manufacturing 2018;23:329-46.[70]Promoppatum P, Uthaisangsuk V. Part scale estimation ofresidual stress development in laser powder bed fusionadditive manufacturing of Inconel 718. Finite Elem Anal Des2021;189:103528.[71]Liang X, Chen Q Cheng L, Hayduke D, To AC. Modifedinherent strain method for efficient prediction of residualdeformation in direct metal laser sintered components.Comput Mech 2019;64:1719-33.[72]Liang X, Cheng L, Chen Q Yang Q, To AC. A modifiedmethod for estimating inherent strains from detailedprocess simulation for fast residual distortion prediction ofsingle-walled structures fabricated by directed energydeposition Additive Manufacturing 2018;23:471-86.[73]B.U.J.C. Vrancken, S.U. Buls, J.P.U. Kruth, J.U.J. Van Humbeeck, Influence ofpreheating and oxygen content on Selective Laser Melting of Ti-6Al-4V,Proceedings of the 16th RAPDASA Conference, (2015).[74]R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P, Kruth, J. Van Humbeeck,Influence of powder bed preheating on microstructure and mechanical propertiesof H13 tool steel SLM parts, in: Laser Assisted Net Shape Engineering 9International Conference on Photonic Technologies Proceedings of the Lane 201 683 (2016) 882-890[75]H Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement thr ough hightemperature powder bed pre-heating of Selective Laser Melted Ti6Al-4V, Mater.Sci. Eng. A-Struct. Mater, Propert. Microstruct, Process. 695 (2017) 211-220[76]M. Maly, C. Holler, M. Skalon, B. Meier, D. Koutny, R. Pichler, C. Sommitsch,D. Palousek, Effect of process parameters and high-temperature preheating onresidual stress and relative density of Ti-6A1-4V processed by selective lasermelting, Materials (Basel) 12 (6) (2019)[77]D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, Investigation onreducing distortion by preheating during manufacture of aluminum componentsusing selective laser melting, J. Laser Appl. 26 (1) (2014) 012004.[78]Aggarangsi P, Beuth J. In: Localized preheating approachesfor reducing residual stress in additive manufacturing. 2006International Solid Freeform Fabrication Symposium; 2006.[79]D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, Investigation onreducing distortion by preheating during manufacture of aluminum componentsusing selective laser melting, J. Laser Appl. 26 (1) (201 4) 012004, , [80]B.U.J.C. Vrancken, S.U. Buls, J.P.U. Kruth, J.U.J. Van Humbeeck, Influence ofpreheating and oxygen content on Selective Laser Melting of Ti-6Al-4V,Proceedings of the 16th RAPDASA Conference (2015).[81]Sealy MP,Madireddy G, Williams RE, Rao P,Toursangsaraki M Hybrid processes in additivemanufacturing.J. Manuf. Sci.E.-T.Asme. 2018;140.[82]Shiomi M Osakada K, Nakamura K, Yamashita T, Abe FResidual stress within metallic model made by selectivelaser melting process.CIRP annals 2004;53:195-8.[83]He Z, Shen Y, Tao J, Chen H, El-Aty AA. Laser shock peeningregulating aluminum alloy surface residual stresses forenhancing the mechanical properties: roles of shocknumber and energy. Surf Coating Technol 2021;421:127481.[84]Wang C, Luo K, Bu X, Su Y, Lu J. Laser shock peening-induced surface gradient stress distribution and extensionmechanism in corrosion fatigue life of AISI 420 stainlesssteel.Corosion Sci 2020;177:109027.[85]Kalentics N, de Seijas MoV, Griffiths S, Leinenbach C,Loge RE. 3D laser shock peening - a new method forimproving fatigue properties of selective laser melted parts.Additive Manufacturing 2020;33:101112.[86]Mirkoohi E, Li D, Garestani H, Liang SY. Analyticalmodeling of residual stress in laser powder bed fusionconsidering volume conservation in plastic deformation.Modelling 2020;1:242-59.[87]Kalentics N, Boillat E, Peyre P, Gorny C, Kenel C,Leinenbach C, et al. 3D laser shock peening - a new methodfor the 3D control of residual stresses in selective lasermelting. Mater Des 2017;130:350-6[88]Sealy MP, Madireddy G, Williams RE, Rao P,Toursangsaraki M. Hybrid processes in additivemanufacturing.J. Manuf. Sci. E.-T.Asme. 2018;140.[89]Sealy MP, Madireddy G, Williams RE, Rao P,Toursangsaraki M. Hybrid processes in additivemanufacturing.J. Manuf. Sci. E.-T.Asme. 2018;140.[90]Tonelli L, Liverani E, Morri A, Ceschini L. Role of directaging and solution treatment on hardness, microstructureand residual stress of the A357 (AlSi7Mg0.6) alloy producedby powder bed fusion. Metall Mater Trans B2021;52:2484-96[91]Berumen S, Bechmann F, Lindner S, Kruth J, Craeghs T. Qualitycontrol of laser-and powder bed-based additive mamfacturing (AM)technologies.Physics Procedia 20105617-622[92]Krauss H Eschey C,Zaeh M. Thermography for monitoring theselective laser melting process, In SFF Symposium, pp. 999-1014. 2012[93]G. Tapia, A. Elwany, A review on process monitoring and control inmetal-based additive manufacturing.. J Manuf Sci Eng 2014; 136(6):060801.[94]Tammas-Williams S. Zhao H, Leonard F, Derguti F, Todd I Prangnellp. XCT analysis of the influence of melt strategies on defect populationin Ti-6A1-4V components manufactured by selective electron beammelting. Mater Charact 2015:10247-61.