Abstract:This article reviews the preparation, charaterizations and catalytic performance in the selective hydrogenation of para-chloronitrobenzene, epichlorohydrin, and phenylacetylene of the Pt nanocatalysts decorated with Cu single atoms. The Pt-Cu catalysts with electronic effect and geometric effect separately can be obtained by decorating the Pt nanoparticles with Cu single atoms in different ways.
The structure and the electronic transfer between Pt and Cu of the Pt-Cu catalysts are revealed by spherical aberration transmission electron microscope (Cs-TEM), synchrotron radiation, and ex-situ XPS charaterizations. The experimental results reveal that the electronic effect can effectively inhibit the dechlorination reactions in the selective hydrogenation of para-chloronitrobenzene and epichlorohydrin, and that geometric effect can help the production of styrene from phenylacetylene. In-situ FT-IR and DFT theoretical calculations are used to reveal the catalytic mechanism that Cu single atoms modify the catalytic performance of Pt nanoparticles. The results reveal that Cu single atoms alter the adsorption behaviors of the reacting molecules and reaction barriers over Pt nanoparticles, which is a solid basis for exploring the catalytic theory.
梁明会. 单原子铜修饰的铂纳米催化剂制备及性能研究进展[J]. , 2024, 31(2): 0-0.
Ming-Hui Liang. Progress in the preparation and performance of Pt nanocatalysts decorated with Cu single atoms. , 2024, 31(2): 0-0.
[1] C. Lim, A.R. Fairhurst, B.J. Ransom, D. Haering, V.R. Stamenkovic, Role of Transition Metals in Pt Alloy Catalysts for the Oxygen Reduction Reaction, ACS Catal, 2023,13: 14874-14893.[2] Z. Li, T.K. Misicko, F. Yang, X.P. Liu, Z.W. Wu, X.Y. Gao, T. Ma, J.T. Miller, D.S. Mainardi, C.D. Wick, Z.H. Zeng, Y. Xiao, Y. Wu, Two-dimensional atomically thin Pt layers on MXenes: The role of electronic effects during catalytic dehydrogenation of ethane and propane, Nano Res, 2024, 17: 1251–1258. [3] M.Y. Deng, D.S. Wang, Y.D. Li, Rational design of catalysts for heterogeneous selective hydrogenation of unsaturated aldehydes/ketones: From nanoparticles to single atoms, Appl Catal A-Gen, 2023, 666:119423.[4] L. Blanco-Redondo, Y. Lobko, K. Veltruská, J. Novaková, M. Mazur, A.M. Darabut, T. Hrbek, M. Dopita, J. Hranicek, Y. Yakovlev, I. Matolinová, V. Matolín, Bifunctional Pt-Ir nanoparticle catalysts for oxygen reduction and evolution reactions: investigating the influence of surface composition on the catalytic properties, Sustain Energ Fuels, 2024,8: 797-810. [5] Y.L. Hua, N. Song, Z.Y. Wu, Y. Lan, H.X. Luo, Q.Q. Song, J.P. Yang, Cu-Fe Synergistic Active Sites Boost Kinetics of Electrochemical Nitrate Reduction, Adv Funct Mater, 2024: 2314461.[6] S.S. Duan, X. Wang, R.P. Ren, Y.K. Lv, Effects of preparation methods on the size and interface of Ni-W bimetallic catalysts for dry reforming of methane, Int J Hydrogen Energ, 2024,54: 1469-1477.[7] S.J. Xia, Z.Y. Yuan, Y. Meng, C. Zhang, X.L. Li, Z.M. Ni, X.Q. Zhang, Fabrication of site activated and synergistic double vacancy ZnInS for highly efficient bifunctional photocatalysis: nitrogen reduction and oxidative degradation, J Mater Chem A, 2024, 12: 2294-2308.[8] Y. Villasana, J.A. García-Macedo, A. Navarro-Puyuelo, M. Boujnah, I. Reyero, H.A. Lara-García, J. Mu?iz, F. Bimbela, L.M. Gandía, J.L. Brito, F.J. Méndez, How bimetallic CoMo carbides and nitrides improve CO oxidation, J Environ Chem Eng, 2023,11:111478. [9] M.A. Matin, S. Kim, Y. Kim, C. Han, S. Byun, H.C. Kim, PtZn alloy nanoparticles with enhanced activity and stability synthesized by a simplified polyol process for electro-oxidation of ammonia, J Power Sources,2024, 591: 233885[10] X. Gui, D. Sorbelli, F.P. Calo, M. Leutzsch, M. Patzer, A. Fuerstner, G. Bistoni, A.A. Auer, Elucidating the Electronic Nature of Rh-based Paddlewheel Catalysts from <SUP>103</SUP>Rh NMR Chemical Shifts: Insights from Quantum Mechanical Calculations, Chem-Eur J, 2024,30: e202301846. [11] A.S. Douk, H. Saravani, Bimetallic Pd-Co Aerogel Three-Dimensional Architecture: Developing Self-Assembled Materials for Advanced Ethanol Oxidation, Acs Omega, 2023,8: 45245-45254.[12] P.Y. Sun, C. Liu, H.Y. Wang, Y.H. Liao, X.N. Li, Q.Y. Liu, B.F. Sels, C.G. Wang, Rational Positioning of Metal Ions to Stabilize Open Tin Sites in Beta Zeolite for Catalytic Conversion of Sugars, Angew Chem Int Edit, 2023, 62: e202215737.[13] F. Yang, H.B. Yu, C.Z. Wu, S.W. Wang, T. Li, H.F. Yin, RhCu Bimetallic Nanoparticles in Hollow Carbon Spheres for Catalytic Halonitrobenzene Chemoselective Hydrogenation, Acs Appl Nano Mater, 2022,5: 11627-11635.[14] L. De Castro, D. Sahsah, A. Heyden, J. Regalbuto, C. Williams, Dilute Limit Alloy Pd-Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined Infrared Spectroscopic and Density Functional Theory Investigation, J Phys Chem C, 2022,126:11111-11128.[15] G. Modragón-Galicia, M.T. Toledo, F. Morales-Anzures, P. Salinas-Hernández, A. Gutiérrez-Martínez, M.E.F. García, F. Tzompantzi, A. Barrera, J. Reyna-Alvarado, O.A. López-Galán, M. Ramos, R. Pérez-Hernandez, Catalytic Aspects of Pt/Pd Supported on ZnO Rods for Hydrogen Production in Methanol Steam Reforming, Top Catal, 2022,65: 1556-1569.[16] X. Zhang, G.Q. Cui, H.S. Feng, L.F. Chen, H. Wang, B. Wang, X. Zhang, L.R. Zheng, S. Hong, M. Wei, Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis, Nat Commun, 2019,10: 5812.[17] G.D. Sun, Z.J. Zhao, R.T. Mu, S.J. Zha, L.L. Li, S. Chen, K.T. Zang, J. Luo, Z.L. Li, S.C. Purdy, A.J. Kropf, J.T. Miller, L. Zeng, J.L. Gong, Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation, Nat Commun,2018, 9:4454.[18] J.L. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski, A.J. Therrien, C.T. Williams, E.C.H. Sykes, M. Flytzani-Stephanopoulos, Tackling CO Poisoning with Single-Atom Alloy Catalysts, J Am Chem Soc, 2016,138: 6396-6399.[19] K.X. Gu, S. Lin, Sustained Hydrogen Spillover on Pt/Cu(111) Single-Atom Alloy: Dynamic Insights into Gas-Induced Chemical Processes, Angew Chem Int Edit, 2023, 62: e202312796.[20] C.C. Qiao, G. Fu, Activation of single atom alloys towards alkyl C-H bond: A theoretical study, Chinese J Chem Phys, 2023, 36: 427-433.[21] A. Oda, T. Fujita, Y. Yamamoto, K. Sawabe, A. Satsuma, Breaking the Structure-Activity Relationship in Toluene Hydrogenation Catalysis by Designing Heteroatom Ensembles Based on a Single-Atom Alloying Approach, ACS Catal, 2023,13: 10026-10040.[22] M. Chhetri, M.Y. Wan, Z.H. Jin, J. Yeager, C. Sandor, C. Rapp, H. Wang, S. Lee, C.J. Bodenschatz, M.J. Zachman, F.L. Che, M. Yang, Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO reduction, Nat Commun, 2023,14: 3075.[23] X. Li, Y. Wang, L.Q. Li, W.Q. Huang, Z.C. Xiao, P.F. Wu, W.B. Zhao, W. Guo, P. Jiang, M.H. Liang, Deficient copper decorated platinum nanoparticles for selective hydrogenation of chloronitrobenzene, J Mater Chem A, 2017, 5: 11294-11300.[24] Y. Wang, J.W. Ren, K. Deng, L.L. Gui, Y.Q. Tang, Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media, Chem Mater, 2000,12:1622-1627. [25] 陈丽芳,于聿律,桑雅子,程涛,刘岩,村上洋,原田雅史,王远, “非保护型”金属胶体纳米簇形成机理研究, 物理化学学报,2020,36(1): 1907008.[26] Y.Q. Zhang, J.S. Yan, R.X. You, M. He, L.G. Wang, M.H. Liang, The effect of the interaction between Cu single atoms and Pt nanoparticles on the selective hydrogenation of epichlorohydrin to chloro-propanol, Appl Surf Sci, 2023, 628: 157382.[27] Y. Liu, W. Guo, X.J. Li, P. Jiang, N. Zhang, M.H. Liang, Copper Single-Atom-Covered Pt Nanoparticles for Selective Hydrogenation of Phenylacetylene, ACS Appl Nano Mater, 2021,4: 5292-5300.[28] M. Vijayalakshmi, D. R. Babu and R. E. Vizhi, Synthesis, growth and characterizations of organic nonlinear optical material: 4-Chloroaniline, J Indian Chem Soc, 2015, 92:815-817[29] P. S. Antonel, E. M. Andrade and F. V. Molina, Copolymerization of aniline and m-chloroaniline. Chlorine addition and structure of the resulting material, React Funct Polym, 2009, 69:197-205[30] C. Xiao, X. D. Wang, C. Lian, H. Q. Liu, M. H. Liang and Y. Wang, Selective Hydrogenation of Halonitrobenzenes, Current Organic Chemistry, 2012, 16: 280-296.[31] J. A. Bond, L. S. Birnbaum, A. R. Dahl, M. A. Medinsky, P. J. Sabourin, R. F. Henderson, Disposition of inhaled 1-chloro-2-propanol in F344N rats, Toxicol. Appl. Pharmacol. 1988,95: 444-455.[32] National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of 1-Chloro-2-propanol (Technical Grade) (CAS NO. 127-00-4) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies. Natl Toxicol Program Tech Rep Ser. 1998, 477: 1-264.[33] Y. X. Shao, D. Dong, Y. H. Cai, S. Wang, S. G. Ang, G. Q. Xu, Thermal and photoinduced covalent attachment of 3-chloro-1-propanol on Si (100)-2×1, J. Phys. Chem. C. 2010,114: 17159-17165.