Abstract:Metal sulfide anode materials have been widely researched in alkali metal ion batteries because of their high theoretical specific capacity. In this paper, the structural characteristics and energy storage mechanism of metal sulfides are introduced. In view of the problems existing in the energy storage process, the synthesis methods of heterostructures and the effects of heterostructures on the electrochemical performance of single metal sulfides anode materials are summarized, and the future research orientation of metal sulfides as anode materials has been given for alkali metal ion batteries.
[1] J.Liu. China' s Renewable Energy Law and Policy: A Critical Review[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 212-219.
[2]L.Gibson,EN. Wilman,W.F. Laurance. How Green is 'Green' Energy?[J].Trends in ecology & evolution, 2017, 32(12):922-935
[3]X.B. Cheng,RZhang,C.-Z. Zhao,et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J].Chemical Reviews, 2017, 117(15):10403-10473
[4] J.-M.T. M. Armand. Building better batteries[J]. Nature, 2008, 451: 652-657.
[5] L.Zhang, C. Zhu, S. Yu, et al. Status and Challenges Facing Representative Anode Materials for Rechargeable Lithium Batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294.
[6]Y.Kim,KH. Ha,S.M. Oh,et al. High-Capacity Anode Materials for Sodium-Ion Batteries[J].Chemistry-A European Journal, 2014, 20(38):11980-11992
[7]Y.Chen,XChen,Y. Zhang. A Comprehensive Review on Metal-Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes[J].Energy & Fuels, 2021, 35(8):6420-6442
[8]H.Wang,SChen,C. Fu,et al. Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries[J].ACS Materials Letters, 2021, 3(7):956-977
[9]M.Chhowalla,HS. Shin,G. Eda,et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nature Chemistry, 2013, 5(4):263-275
[10]D.Voiry,AGoswami,R. Kappera,et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering[J].Nature Chemistry, 2014, 7(1):45-49
[11] R.Bissessur, M.G. Kanatzidis, J.L. Schindler, et al. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2[J]. Journal of the Chemical Society, Chemical Communications, 1993: 1582-1585.
[12]C.Wu,SX. Dou,Y. Yu. The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage[J].Small, 2018, 14(22):1703671-
[13]Y.Lu,LYu,X.W. Lou. Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries[J].Chem, 2018, 4(5):972-996
[14] H.He, D. Sun, Y. Tang, et al. Understanding and Improving the Initial Coulombic Efficiency of High-Capacity Anode Materials for Practical Sodium Ion Batteries[J]. Energy Storage Materials, 2019, 23: 233-251.
[15]X.Wei,XWang,X. Tan,et al. Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries[J].Advanced Functional Materials, 2018, 28(46):1804458-
[16]H.Tan,YFeng,X. Rui,et al. Metal Chalcogenides: Paving the Way for High-Performance SodiumPotassium-Ion Batteries[J].Small Methods, 2019, 4(1):1900563-
[17] Y.Liu, C. Yang, Q. Zhang, et al. Recent Progress in the Design of Metal Sulfides as Anode Materials for Sodium Ion Batteries[J]. Energy Storage Materials, 2019, 22: 66-95.
[18]K.Wu,XCao,M. Li,et al. Bottom-Up Synthesis of MoS2CNTs Hollow Polyhedron with 1T2H Hybrid Phase for Superior Potassium-Ion Storage[J].Small, 2020, 16(43):2004178-
[19] Z.Ali, T. Zhang, M. Asif, et al. Transition Metal Chalcogenide Anodes for Sodium Storage[J]. Materials Today, 2020, 35: 131-167.
[20]J.Zhou,LWang,M. Yang,et al. Hierarchical VS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions[J].Advanced Materials, 2017, 29(35):1702061-
[21] F.Chen, D. Shi, M. Yang, et al. Novel Designed MnS-MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering[J]. Advanced Functional Materials, 2020, 31: 2007132.
[22] H.Li, Y. He, Y. Dai, et al. Bimetallic SnS2/NiS2@S-rGO Nanocomposite with Hierarchical Flower-Like Architecture for Superior High Rate and Ultra-Stable Half/Full Sodium-Ion Batteries[J]. Chemical Engineering Journal, 2022, 427: 131784.
[23]Q.Pan,QZhang,F. Zheng,et al. Construction of MoS2C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries[J].ACS Nano, 2018, 12(12):12578-12586
[24] Y.Zhang, P. Wang, Y. Yin, et al. Heterostructured SnS-ZnS@C Hollow Nanoboxes Embedded in Graphene for High Performance Lithium and Sodium Ion Batteries[J]. Chemical Engineering Journal, 2019, 356: 1042-1051.
[25]X.Ou,LCao,X. Liang,et al. Fabrication of SnS2Mn2SnS4Carbon Heterostructures for Sodium-Ion Batteries with High Initial Coulombic Efficiency and Cycling Stability[J].ACS Nano, 2019, 13(3):3666-3676
[26] X.Li, Y. Xiang, R. Deng, et al. Metal Organic Frameworks-Derived Multi-Shell Copper-Cobalt-Zinc Sulfide Cubes for Sodium-Ion Battery Anode[J]. Chemical Engineering Journal, 2021, 425: 131501.
[27]L.Cao,BZhang,X. Ou,et al. Synergistical Coupling Interconnected ZnSSnS2 Nanoboxes with Polypyrrole-Derived NS Dual-Doped Carbon for Boosting High-Performance Sodium Storage[J].Small, 2019, 15(9):1804861-
[28]D.Wu,WZhang,Y. Feng,et al. Necklace-Like Carbon Nanofibers Encapsulating V3S4 Microspheres for Ultrafast and Stable Potassium-Ion Storage[J].Journal of Materials Chemistry A, 2020, 8(5):2618-2626
[29] Z.Zhang, L. Li, Z. Zhu, et al. Homogenous Sdiophilic MoS2/Nitrogen-Doped Carbon Nanofibers to Stabilize Sodium Deposition for Sodium Metal Batteries[J]. Energy Storage Materials, 2022, 53: 363-370.
[30] J.Wen, X. Song, X. Li, et al. Facile Synthesis of Hierarchical MoS2/ZnS@Porous Hollow Carbon Nanofibers for a Stable Li Metal Anode[J]. Journal of Colloid and Interface Science, 2022, 622: 347-356.
[31]Y.Li,JZhang,Q. Chen,et al. Emerging of Heterostructure Materials in Energy Storage: A Review[J].Advanced Materials, 2021, 33(27):2100855-
[32] Y.Dong, H. Jiang, Z. Deng, et al. Synthesis and Assembly of Three-Dimensional MoS2/rGO Nanovesicles for High-Performance Lithium Storage[J]. Chemical Engineering Journal, 2018, 350: 1066-1072.
[33]Z.Cui,SA. He,J. Zhu,et al. Tailoring the Void Space Using Nanoreactors on Carbon Fibers to Confine SnS2 Nanosheets for Ultrastable LithiumSodium-Ion Batteries[J].Small Methods, 2022, 6(4):2101484-
[34]T.Hou,BLiu,X. Sun,et al. Covalent Coupling-Stabilized Transition-Metal SulfideCarbon Nanotube Composites for LithiumSodium-Ion Batteries[J].ACS Nano, 2021, 15(4):6735-6746
[35]Y.Cheng,ZWang,L. Chang,et al. Sulfur-Mediated Interface Engineering Enables Fast SnS Nanosheet Anodes for Advanced LithiumSodium-Ion Batteries[J].ACS Applied Materials & Interfaces, 2020, 12(23):25786-25797
[36]X.Xie,SZhou,G. Fang,et al. Interface Engineering Enhances Pseudocapacitive Contribution to Alkali Metal Ion Batteries[J].ACS Applied Energy Materials, 2023, 6(3):1877-1887
[37]L.Cao,XLiang,X. Ou,et al. Heterointerface Engineering of Hierarchical Bi2S3MoS2 with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance[J].Advanced Functional Materials, 2020, 30(16):1910732-
[38]L.Cao,XGao,B. Zhang,et al. Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries[J].ACS Nano, 2020, 14(3):3610-3620
[39]Kumar, Y. Kuang, Z. Liang, et al..Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review[J].Materials Today Nano, 2020, 11:100076-