Abstract:Thermoelectric material has become a hot topic in the area of new functional materials, which combines cooling and power generation. The history, current situation, prospects of the development of new high efficient thermoelectric materials is presented. The methods to increase the figure of merit and thermoelectric conversion efficiency are also analyzed.
DiSalvo F J.Thermoelectric cooling and power generation[J].Science, 1999, 285(5428):703-706
[7]
Sales B C.Smaller is cooler[J].Science, 2002, 295(5558):1248-1249
[40]
Hashimoto M, Ohashi O, Nishida I A, et al.Thermoelectric Properties of Pb1-xSnxTe FGM by Liquid Phase Diffusion Bonding[C]//Materials science forum. 1999, 308: 699-703.
[3]
Tritt T M.Holey and unholey semiconductors[J].Science, 1999, 283(5403):804-805
[5]
Wood C.Materials for thermoelectric energy conversion[J].Reports on progress in physics, 1988, 51(4):459-460
[6]
Vining C B.Semiconductors are cool[J].Nature, 2001, 413(6856):577-578
[8]
Mahan G, Sales B, Sharp J.Thermoelectric materials: New approaches to an old problem[J].Physics Today, 1997, 50(3):42-47
[9]
Ding Z.A new solution chemical method to make low dimensional thermoelectric materials[M]. 2001.
[2]
Venkatasubramanian R, Siivola E, Colpitts T, et al.Thin-film thermoelectric devices with high room-temperature figures of merit[J].Nature, 2001, 413(6856):597-602
[10]
Zhang Y, Wang H, Kraemer S, et al.Surfactant-Free Synthesis of Bi2Te3?Te Micro?Nano Heterostructure with Enhanced Thermoelectric Figure of Merit[J].ACS nano, 2011, 5(4):3158-3165
[11]
Zhou Y, Li X, Bai S, et al.Comparison of space-and ground-grown Bi2Se021Te2.79 thermoelectric crystals[J].Journal of Crystal Growth, 2010, 312(6):775-780
[13]
Wang X W, Lee H, Lan Y C, et al.Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy[J].Applied Physics Letters, 2008, 93(19):193121-193121
[15]
Cai K F, Müller E, Dra?ar C, et al.Preparation and thermoelectric properties of Al-doped ZnO ceramics[J].Materials Science and Engineering: B, 2003, 104(1):45-48
[16]
Terasaki I, Sasago Y., Uchinokura K..Large Thermoelectric Power in NaCo2O4Single Crystals[J].Physical. Review. B, 1997, 56(20):12685-12687
[18]
Iwasaki K, Yamane H, Kubota S, et al.Power factors of Ca3Co2O6 and Ca3Co2O6-based solid solutions[J].Journal of alloys and compounds, 2003, 358(1-2):210-215
[19]
He Qinyu, Hao Qing and Chen Gang, Poudel Bed, Wang Xiaowei, Wang Dezhi, and Ren Zhifeng.Thermoelectric property studies on bulk TiOx with x from 1 to 2 [J].Applied Physics Letters, 2007, 91(5):052505-052505-3
Terasaki I, Sasago Y, Uchinokura K.Large thermoelectric power in NaCo2O4 single crystals[J].Physical Review B, 1997, 56(20):12685-12687
[22]
Yakabe H, Fujita K, Nakamura K, et al.Thermoelectric properties of NaxCoO2-δsystem; focusing on partially substituting effects[C]//Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on. IEEE, 1998: 551-558.
[23]
Kazeoka M, Hiramatsu H, Seo W S, et al.Improvement in thermoelectric properties of (ZnO) 5In2O3 through partial substitution of yttrium for indium[J].Journal of materials research, 1998, 13(3):523-526
[24]
Slack G A.New materials and performance limits for thermoelectric cooling[J].CRC Handbook of Thermoelectrics, 1995, 407(1):12685-12687
[25]
Lee C.Kito H,Ihara H.,et al.,Single crystal growth of skutterudite CoP3 under high pressure[J].Journal of crystal growth, 2004, 263(1):358-362
[26]
Singh D J, Fornari M, Feldman J L, et al.First principles studies of novel thermoelectric materials[C]//Thermoelectrics, 1999. Eighteenth International Conference on. IEEE, 1999: 448-450.
[28]
Nolas G S, Kaeser M, Littleton R T, et al.High figure of merit in partially filled ytterbium skutterudite materials[J].Applied Physics Letters, 2000, 77(12):1855-1857
[29]
Sales B C, Chakoumakos B C, Mandrus D.Thermoelectric properties of thallium-filled skutterudites[J].Physical Review B, 2000, 61(4):2475-2481
[31]
He T, Chen J, Rosenfeld H D, et al.Thermoelectric properties of indium-filled skutterudites[J].Chemistry of materials, 2006, 18(3):759-762
[32]
Zhao X Y, Shi X, Chen L D, et al.Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12[J].Journal of applied physics, 2006, 99(5):053711-053711
[34]
Pei Y Z, Yang J, Chen L D, et al.Improving thermoelectric performance of caged compounds through light-element filling[J].Applied Physics Letters, 2009, 95(4):042101-042101
[4]
Sales B.C.,Mandrus D,and Williams R. K. Filled Skutterudite Antimonides: A New class of thermoelectric Materials[J].Science, 1996, 272(5):1325-1328
[14]
Joshi G, Lee H, Lan Y, et al.Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J].Nano letters, 2008, 8(12):4670-4674
[17]
Wang Y, Rogado N S, Cava R J, et al.Spin entropy as the likely source of enhanced thermopower in NaxCo2O4[J].Nature, 2003, 423(6938):425-428
[20]
Migiakis P.Androulakis J,Giapintzakis J.,Thermoelectric properties of LaNi1-xCoxO3 solid solution[J].Journal of applied physics, 2003, 94(12):7616-7620
[27]
Shi X, Bai S, Xi L, et al.Realization of high thermoelectric performance in n-type partially filled skutterudites[J].Journal of Materials Research, 2011, 26(15):1745-1754
[30]
Chen L D, Kawahara T, Tang X F, et al.Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12[J].Journal of Applied Physics, 2001, 90(4):1864-1868
[33]
Puyet M, Lenoir B, Dauscher A, et al.High temperature transport properties of partially filled CaxCo4Sb12 skutterudites[J].Journal of applied physics, 2004, 95(9):4852-4855
[36]
Shi X, Bai S, Xi L, et al.Realization of high thermoelectric performance in n-type partially filled skutterudites[J].Journal of Materials Research, 2011, 26(15):1745-1754
[38]
Saramat A, Svensson G, Palmqvist A E C, et al.Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30[J].Journal of Applied Physics, 2006, 99(2):023708-023708
[35]
Pei Y Z, Bai S Q, Zhao X Y, et al.Thermoelectric properties of EuyCo4Sb12 filled skutterudites[J].Solid State Sciences, 2008, 10(10):1422-1428
[37]
Yu C, Zhu T J, Shi R Z, et al.High-performance half-Heusler thermoelectric materials Hf1?xZrxNiSn1?ySby prepared by levitation melting and spark plasma sintering[J].Acta Materialia, 2009, 57(9):2757-2764
[39]
Chen L, Hirai T.Recent and prospective development of functionally graded materials in Japan[C]//Materials Science Forum. 1999, 308: 509-514.
[42]
Hicks L D, Dresselhaus M S.Effect of quantum-well structures on the thermoelectric figure of merit[J].Physical Review B, 1993, 47(19):12727-12731
[44]
Liu W, Yan X, Chen G, et al.Recent advances in thermoelectric nanocomposites[J].Nano Energy, 2012, 1(1):42-56
[45]
Elsner N B, Ghamaty S.QUANTUM WELL THERMOELECTRIC DEVICES[C]//ASME Technical Conference on Packaging of MEMS, NEMS and Electric Systems. 2005: 1-6.
[47]
Suzuki K, Hashimoto N, Oyama T, et al.Large scale and low resistance ITO films formed at high deposition rates[J].Thin Solid Films, 1993, 226(1):104-109
[48]
Higuchi M, Uekusa S, Nakano R, et al.Micrograin structure influence on electrical characteristics of sputtered indium tin oxide films[J].Journal of applied physics, 1993, 74(11):6710-6713
[50]
Shigesato Y, Takaki S, Haranoh T.Electrical and structural properties of low resistivity tin‐doped indium oxide films[J].Journal of applied physics, 1992, 71(7):3356-3364
[43]
Harman T C, Taylor P J, Walsh M P, et al.Quantum dot superlattice thermoelectric materials and devices[J].Science, 2002, 297(5590):2229-2232
[46]
Krommenhoek D J, Ghamaty S, Bass J C, et al.Predicted Performance of Quantum Well Thermoelectrics for Power Generation[C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, California, June. 2006: 26-29.
[49]
S B.Lee,JC.Pincenti,A.Cocco,et al.Electrical and structural properties of low resistivity tin0-doped indium oxide films[J].J.Vac.Sci.Technol.A, 1993, 11(5):2742-2746