Abstract:With the rapid development of the fields of electronic information and new energy industries, the demand for new high-end functional metal materials has become more urgent. The micro-nano high purity copper powder has excellent characteristics, such as low sintering-temperature, low softening-temperature, high specific-surface, high electrical and thermal conductivity, and thus has become a key material in PCB interconnect, metallurgy and wind power fields. However, the preparation of micro-nano copper powders has still some difficult problems. In this paper, different preparation processes for micro-nano copper powders are analyzed, as well as their advantages and disadvantages. In the preparation of micron-sized copper powders, both electrolysis and atomization method are mainly adopted, but the purity of the copper powders obtained from the preparation is low. For the nano-sized copper powders, the liquid-phase reduction method is mainly adopted, which can meet the requirements of high purity and small size, while the difficulties of engineering mass production are needed to overcome.
参考文献 [1] Lyu Z, Shang Y, Xia Y, et al. Shape-Controlled Synthesis of Copper Nanocrystals for Plasmonic, Biomedical, and Electrocatalytic Applications[J]. Accounts of Materials Research. 2022, 3(11): 1137-1148. [2] Kevin Ross, Buonsanti R. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction[J]. Accounts of Chemical Research. 2021, 55(5): 629-637. [3] Gawande M B, Goswami A, Felpin F, et al. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis[J]. Chemical reviews. 2016, 116(6): 3722-3811. [4] Zhu X N, Nie C C, Ni Y, et al. Advanced utilization of copper in waste printed circuit boards: Synthesis of nano-copper assisted by physical enrichment[J]. J Hazard Mater. 2021, 401: 123294. [5] Shengrong Ye, Aaron R. Rathmell, Zuofeng Chen, et al. Metal Nanowire Networks_ The Next Generation of Transparent Conductors[J]. Advanced Materials. 2014, 26(39): 1-18. [6] Butt F A, Alshahrani T, Awan Z U H, et al. Electrochemical CO2 reduction to gaseous methane and carbon monoxide using plasma-synthesized copper nanowires[J]. Journal of Solid State Electrochemistry. 2023. [7] Yang A, Li S, Wang Y, et al. Fabrication of Cu2O@Cu2O core–shell nanoparticles and conversion to Cu2O@Cu core–shell nanoparticles in solution[J]. Transactions of Nonferrous Metals Society of China. 2015, 25(11): 3643-3650. [8] Interconnect Processing: Integration, Dielectrics, Metals[J]. [9] Xiaoli Wang, Binshi Xu, Yi Xu, et al. Preparation of nano-copper as lubrication oil additive[J]. Journal of Central South University. 2005, 12(2): 203-206.[10] Walke S, Mandake M B, Naniwadekar M, et al. A review on copper chemical vapour deposition[J]. Materials Today: Proceedings. 2023.[11] Kim C, Gu W, Briceno M, et al. Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition[J]. Advanced Materials. 2008, 20(10): 1859-1863.[12] Babu Madavali, Jin-He Lee, Jin Kyu Lee, et al. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling[J]. Powder Technology. 2014, 256: 251-256.[13] Eltefat Ahmadi, Mahdieh Malekzadeh, Sadrnezhaad S K H. An Investigation on the Milling and Hydrogen Reduction Behavior of Nanostructured W-Cu Oxide Powder: Proceedings of the International Conference on Nanotechnology: Fundamentals and Applications[Z]. Ottawa, Ontario, Canada: 2010.[14] 黄凌云,朱国才,池汝安,等. 我国超细铜粉研究及生产现状[J]. 化学通报(印刷版). 2008, 71(5): 356-360.[15] 白柳杨,袁方利,张海宝,等. 氢等离子体还原制备纳米镍粉/铜粉研究[J]. 电子元件与材料. 2011, 30(10): 44-46.[16] 张小敏,赵芳霞,张振忠,等. 超细铜粉制备及其表面抗氧化改性研究[J]. 高校化学工程学报. 2018, 32(6): 1388-1393.[17] A. Jain, K. M. Chi, Hampden-Smith M J, et al. Chemical vapor deposition of copper via disproportionation of hexafluoroacetylacetonato(l ,5-cyclooctadiene)copper(i), (hfac)Cu(l,5-COD[J]. Journal of Materials Research. 1992, 7(2): 261-264.[18] Raffi M, Mehrwan S, Bhatti T M, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Annals of microbiology. 2010, 60(1): 75-80.[19] Thao D V P, Thuy Ngan D T, Tuan D V, et al. Facile preparation of copper nanoparticles in environmentally friendly solvent for DNA sensor application[J]. Materials Today Communications. 2022, 33: 104161.[20] 李廷取,庞勃,曲明洋. 电沉积法制备超细高纯铜粉[J]. 有色金属工程. 2016, 6(4): 6-8, 21.[21] Li G, Wang N, Wang Y, et al. Synthesis and performance characterization of nano-copper by electrochemical deposition method based on coaxial electrode structure[J]. Journal of the Iranian Chemical Society. 2023, 20(4): 839-848.[22] 耿新玲,苏正涛. 液相法制备纳米铜粉的研究[J]. 应用化工. 2005, 34(10): 615-617.[23] M. S. Aguilar, Esparza R, Rosas G. Synthesis of Cu nanoparticles by chemical reduction method[J]. Trans. Nonferrous Met. Soc. China. 2019, 29: 1510-1515.[24] Zong Y, He X, Zhu D, et al. Sequential Two-Step Reduction of High-Purity Nano Copper with Glucose and Ascorbic Acid for the Synthesis of Nano Silver-Coated Copper[J]. Transactions of the Indian Institute of Metals. 2023.[25] Granata G, Onoguchi A, Tokoro C. Preparation of copper nanoparticles for metal-metal bonding by aqueous reduction with d-glucose and PVP[J]. Chemical Engineering Science. 2019, 209: 115210.[26] Alsawafta M, Badilescu S, Packirisamy M, et al. Kinetics at the nanoscale: formation and aqueous oxidation of copper nanoparticles[J]. Reaction kinetics, mechanisms and catalysis. 2011, 104(2): 437-450.[27] 周全法,蒋萍萍,朱雯,等. 抗氧化纳米铜粉的制备及表征[J]. 稀有金属材料与工程. 2004, 33(2): 179-182.[28] 王博亚,卢林,吴文恒,等. 气雾化制粉技术研究进展[J]. 粉末冶金工业. 2019, 29(5): 74-80.[29] Giuffrida S, Costanzo L L, Ventimiglia G, et al. Photochemical synthesis of copper nanoparticles incorporated in poly(vinyl pyrrolidone)[J]. Journal of Nanoparticle Research. 2008, 10(7): 1183-1192.[30] Granata G, Yamaoka T, Pagnanelli F, et al. Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability[J]. Journal of Nanoparticle Research. 2016, 18(5): 1.[31] Alzahrani E, Ahmed R A. Synthesis of Copper Nanoparticles with Various Sizes and Shapes: Application as a Superior Non-Enzymatic Sensor and Antibacterial Agent[J]. International Journal of Electrochemical Science. 2016, 11(6): 4712-4723.[32] Hokita Y, Kanzaki M, Sugiyama T, et al. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks[J]. ACS Applied Materials & Interfaces. 2015, 7(34): 19382-19389.[33] 李若远,黄钧声. 基于硼氢化钾制备纳米铜粉[J]. 热加工工艺. 2021, 50(10): 48-51.[34] 陈光艳,龙沁,谢克难,等. 半连续微乳液法制备纳米铜粉的研究[J]. 功能材料. 2016, 47(3): 3227-3231.[35] Zhu H, Zhang C, Yin Y. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation[J]. Journal of Crystal Growth. 2004, 270(3-4): 722-728.[36] Lopes I S, Yee M, Tatumi S H, et al. GABA functionalized gold, silver, and copper nanoparticles: Synthesis, characterization and potential applications[J]. Journal of Drug Delivery Science andTechnology. 2024, 92: 105386.[37] 朱澍勋. 电解法制备铜粉工艺研究[J]. 冶金工程. 2021, 8(3): 120-126.[38] 朱澍勋. Research on Preparation of Copper Powder by Electrolysis[J]. Metallurgical Engineering. 2021, 8(3): 120-126.[39] Kassym K, Perveen A. Atomization processes of metal powders for 3D printing[J]. Materials Today: Proceedings. 2020, 26: 1727-1733.[40] Planche M P, Khatim O, Dembinski L, et al. Velocities of copper droplets in the De Laval atomization process[J]. Powder Technology. 2012, 229: 191-198.[41] 谭芳香,黄以伟. 水雾化法制备铜及铜合金粉[J]. 金属功能材料. 2021, 28(3): 18-22.[42] Leo V. M. Antony, Reddy R G. Processes for production of high-purity metal powders[J]. JOM. 2003, 55(3): 14-18.[43] Li P, Chen C, Qin Q, et al. Sintering microstructure and properties of copper powder prepared by electrolyzation and atomization[J]. Journal of Central South University. 2021, 28(7): 1966-1977.[44] Nayda Y I, Stepanchuk A N, Nayda A Y. Industrial production of powders of copper alloys by impact atomization of a jet of melt[J]. Powder Metallurgy and Metal Ceramics. 2006, 45(1-2): 93-97.[45] Yukimasa T. A Review of Metal Powder Production[J]. Journal of Mmij. 1989, 105(2): 102-106.[46] Aaron R. Rathmell, Stephen M. Bergin, Yi-Lei Hua, et al. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films[J]. Advanced Materials. 2010, 22: 3558-3563.[47] Sendova M, Jiménez J A, Smith R, et al. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach[J]. Physical chemistry chemical physics : PCCP. 2015, 17(2): 1241-1246.