MXene及其复合材料在水系锌离子电池正极中的研究进展
房栾,刘爽,聂平
吉林师范大学
Recent Progress of MXene and its Composites in Cathode Materials of Aqueous Zinc-ion Batteries
摘要 水系锌离子电池是一种很有前景的电化学储能器件,它具有易于制备,环境友好,安全性高和容量大等优点。新型MXene材料由于其独特的结构特征和物理化学性质,显示出增强电极电化学性能的能力。除了可调节的层间距外,由于其优异的导电性、丰富的化学组成和可控的表面化学,使MXene成为可充电电池的潜在电极材料。本文综述了MXene及其复合材料在水系锌离子电池正极材料中的应用进展,总结了MXene材料在锌离子储能器件中的独特优势。最后,概述了锌离子储能中MXene材料存在的挑战和应用前景。
关键词 :
MXene ,
水系锌离子电池 ,
正极材料 ,
电化学性能
Abstract :Aqueous zinc-ion batteries are one of the promising electrochemical energy storage devices. It has the advantages of easy preparation, environmental friendliness, high safety and large specific capacity. Due to the unique structural characteristics and physical/chemical properties, MXene shows the ability to enhance the electrochemical performance of electrodes. It has been considered a potential electrode material for rechargeable batteries due to the excellent conductivity, rich chemical composition, controllable surface chemistry and adjustable layer spacing. In this review, the recent progress of MXene and its composites in cathode materials of aqueous zinc ion batteries is summarized, and the unique advantage of MXene materials for zinc ion storage is discussed. Finally, the challenges and prospects of MXene materials in zinc ion batteries have also been outlined.
Key words :
MXene
Zinc ion batteries
cathode materials
electrochemical performance
收稿日期: 2023-02-27
出版日期: 2023-10-18
通讯作者:
聂平
E-mail: xdnieping2009@sina.com
1. Zhang, N.; Chen, X.; Yu, M.; Niu, Z.; Cheng, F.; Chen, J., Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev 2020, 49 (13), 4203-4219.2. Wang, Z.; Zhang, M.; Ma, W.; Zhu, J.; Song, W., Application of Carbon Materials in Aqueous Zinc Ion Energy Storage Devices. Small 2021, e2100219.3. Zampardi, G.; La Mantia, F., Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun 2022, 13 (1), 687.4. Li, C.; Jin, S.; Archer, L. A.; Nazar, L. F., Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 2022, 6 (8), 1733-1738.5. Dong, H.; Li, J.; Guo, J.; Lai, F.; Zhao, F.; Jiao, Y.; Brett, D. J. L.; Liu, T.; He, G.; Parkin, I. P., Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization. Adv Mater 2021, 33 (20), e2007548.6. Melief, C. J. M., Smart delivery of vaccines. Nat Mater 2018, 17 (6), 482-483.7. Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nanomicro Lett 2022, 14 (1), 42.8. Zong, Q.; Wu, Y.; Liu, C.; Wang, Q.; Zhuang, Y.; Wang, J.; Tao, D.; Zhang, Q.; Cao, G., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials 2022, 52, 250-283.9. Zhang, Y.; Tao, L.; Xie, C.; Wang, D.; Zou, Y.; Chen, R.; Wang, Y.; Jia, C.; Wang, S., Defect Engineering on Electrode Materials for Rechargeable Batteries. Adv Mater 2020, 32 (7), e1905923.10. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater 2011, 23 (37), 4248-4253.11. Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G., Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. Small 2021, 17 (9), e1902085.12. Li, J.; Rui, B.; Wei, W.; Nie, P.; Chang, L.; Le, Z.; Liu, M.; Wang, H.; Wang, L.; Zhang, X., Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J Power Sources 2020, 449, 227481.13. Tang, Q.; Zhou, Z.; Shen, P., Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 2012, 134 (40), 16909-16.14. Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 2017, 46 (22), 6816-6854.15. Zhang, P.; Wang, F.; Yu, M.; Zhuang, X.; Feng, X., Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 2018, 47 (19), 7426-7451.16. Liu, Y.; Wang, S.; Huang, Z.; Yang, X.; Zhang, R.; Liu, X.; Lu, S.; Ma, X., Recent advances and promise of zinc-ion energy storage devices based on MXenes. J Mater Sci 2022, 57 (29), 13817-13844.17. An, Y.; Tian, Y.; Feng, J.; Qian, Y., MXenes for advanced separator in rechargeable batteries. Mater Today 2022, 57, 146-179.18. Ming, F.; Liang, H.; Huang, G.; Bayhan, Z.; Alshareef, H. N., MXenes for Rechargeable Batteries Beyond the Lithium-Ion. Adv Mater 2021, 33 (1), e2004039.19. Aslam, M. K.; Xu, M., A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale 2020, 12 (30), 15993-16007.20. Tian, Y.; An, Y.; Feng, J.; Qian, Y., MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater Today 2022, 52, 225-249.21. Wu, Y.; Sun, Y.; Zheng, J.; Rong, J.; Li, H.; Niu, L., MXenes: Advanced materials in potassium ion batteries. Chem. Eng. J. 2021, 404, 126565.22. Zhao, R.; Elzatahry, A.; Chao, D.; Zhao, D., Making MXenes more energetic in aqueous battery. Matter 2022, 5 (1), 8-10.23. Huang, Y.; Lu, Q.; Wu, D.; Jiang, Y.; Liu, Z.; Chen, B.; Zhu, M.; Schmidt, O. G., Flexible MXene films for batteries and beyond. Carbon Energy 2022, 4 (4), 598-620.24. Iqbal, M. Z.; Khan, M. W.; Siddique, S.; Aftab, S., MXenes: An exotic material for hybrid supercapacitors and rechargeable batteries. Journal of Energy Storage 2022, 56, 105914.25. Xu, Z.; Li, M.; Sun, W.; Tang, T.; Lu, J.; Wang, X., An Ultrafast, Durable, and High-Loading Polymer Anode for Aqueous Zinc-Ion Batteries and Supercapacitors. Adv Mater 2022, 34 (23), e2200077.26. Guo, C.; Yi, S.; Si, R.; Xi, B.; An, X.; Liu, J.; Li, J.; Xiong, S., Advances on Defect Engineering of Vanadium‐Based Compounds for High‐Energy Aqueous Zinc–Ion Batteries. Adv Energy Mater 2022, 12(40), 2202039.27. He, H.; Lian, J.; Chen, C.; Xiong, Q.; Li, C. C.; Zhang, M., Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn-Ion Hybrid Capacitors. Nanomicro Lett 2022, 14 (1), 106.28. Javed, M. S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S. S. A.; Han, W., The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. Small 2022, 18 (26), e2201989.29. Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; Zhi, C., In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Adv Energy Mater 2020, 10 (36), 2001791.30. Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; Li, N.; Dong, B.; Huang, Q.; Chen, F.; Fan, J.; Zhi, C., Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021, 5 (11), 2993-3005.31. Shen, X.; Wang, X.; Zhou, Y.; Shi, Y.; Zhao, L.; Jin, H.; Di, J.; Li, Q., Highly Reversible Aqueous Zn‐MnO2 Battery by Supplementing Mn 2+ ‐Mediated MnO2 Deposition and Dissolution. Adv Funct Mater 2021, 31 (27), 2101579.32. Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M. S.; Mathew, V.; Sun, Y. K.; Hwang, J. Y.; Kim, J., In Situ Oriented Mn Deficient ZnMn2O4@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc-Ion Batteries. Adv Sci 2021, 8(4), 2002636.33. Zeng, X.; Liu, J.; Mao, J.; Hao, J.; Wang, Z.; Zhou, S.; Ling, C. D.; Guo, Z., Toward a Reversible Mn4+ /Mn2+ Redox Reaction and Dendrite‐Free Zn Anode in Near‐Neutral Aqueous Zn/MnO2 Batteries via Salt Anion Chemistry. Adv Energy Mater 2020, 10 (32), 1904163.34. Sun, T.; Zheng, S.; Nian, Q.; Tao, Z., Hydrogen Bond Shielding Effect for High-Performance Aqueous Zinc Ion Batteries. Small 2022, 18(12), 2107115.35. Yang, Z.; Pan, X.; Shen, Y.; Chen, R.; Li, T.; Xu, L.; Mai, L., New Insights into Phase-Mechanism Relationship of MgxMnO2 Nanowires in Aqueous Zinc-Ion Batteries. Small 2022, 18 (13), e2107743.36. Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O. G.; Wang, L., Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery. Adv Funct Mater 2019, 29 (28), 1901336.37. Shi, M.; Wang, B.; Chen, C.; Lang, J.; Yan, C.; Yan, X., 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J Mater Chem A 2020, 8 (46), 24635-24644.38. Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M., Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. ACS Nano 2021, 15 (2), 2971-2983.39. Chen, X.; Zhang, H.; Liu, J.-H.; Gao, Y.; Cao, X.; Zhan, C.; Wang, Y.; Wang, S.; Chou, S.-L.; Dou, S.-X.; Cao, D., Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges. Energy Storage Materials 2022, 50, 21-46.40. Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J., Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V2Ox@V2CTx) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. ACS Appl Energy Mater 2020, 3 (5), 4677-4689.41. Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C., Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun 2020, 56 (47), 6412-6415.42. Liu, C.; Xu, W.; Mei, C.; Li, M.-C.; Xu, X.; Wu, Q., Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem Eng J 2021, 405, 126737.43. Zhu, X.; Wang, W.; Cao, Z.; Gao, S.; Chee, M. O. L.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M.; Shen, J., Zn2+-Intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J Mater Chem A 2021, 9 (33), 17994-18005.44. Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-k.; Kim, J., The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials 2020, 28, 407-417.45. Wu, T. H.; Liang, W. Y., Reduced Intercalation Energy Barrier by Rich Structural Water in Spinel ZnMn2O4 for High-Rate Zinc-Ion Batteries. ACS Appl Mater Interfaces 2021, 13 (20), 23822-23832.46. Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q., 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J 2020, 399.47. Liu, Y.; Wang, J.; Zeng, Y.; Liu, J.; Liu, X.; Lu, X., Interfacial Engineering Coupled Valence Tuning of MoO3 Cathode for High‐Capacity and High‐Rate Fiber‐Shaped Zinc‐Ion Batteries. Small 2020, 16 (11), 1907458.48. Shi, J.; Hou, Y.; Liu, Z.; Zheng, Y.; Wen, L.; Su, J.; Li, L.; Liu, N.; Zhang, Z.; Gao, Y., The high-performance MoO3?x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 2022, 91, 106651.
[1]
谢清水 汪依依 夏丽 张一鸣 瞿佰华 王敬丰 周小元 彭栋梁. 镁离子电池的工作原理与关键材料 [J]. , 2024, 31(1): 0-0.
[2]
王静 陈啸 张磊 尚晨伟 田宇 徐立新 李育飞. 碳材料与钴铝氢氧化物复合材料的制备与性能研究 [J]. , 2024, 31(1): 0-0.
[3]
沈秉金 赵刘强 周健飞 张乾坤 罗永春. La-Nd-Y-Ni系A5B19型储氢合金表面原位合成Ni3S2@MoS2改性及其电化学性能 [J]. , 2023, (5): 0-0.
[4]
孙艳 罗永春. 制备工艺对无钴AB5-5.6型合金相结构 和电化学性能的影响 [J]. , 2023, 30(1): 0-0.
[5]
刘芙辰 韩忠刚 袁泽明 翟亭亭 冯佃臣 张羊换. La替代Ti对TiFe系储氢合金微观结构和电化学性能的影响 [J]. , 2022, 29(5): 0-0.
[6]
纪铭悦 田晓 刘昕瑀 张宇琦 伟伟 杨艳春 李卫. 铸态和快淬态La-Mg-Ni 储氢合金的电化学性能及其对BH4-的催化氧化性能 [J]. , 2022, 29(4): 0-0.
[7]
卫振 冯佃臣 翟亭亭 袁泽明 张羊换. La2-xSmxMg16Ni(x=0.1~0.4)+100wt.% Ni+5 wt.%石墨烯复合储氢合金电化学性能研究 [J]. , 2022, 29(1): 0-0.
[8]
高金良 李军 张薇 房成 张羊换. 钐对无钴AB5型稀土贮氢合金微观结构和电化学性能的影响 [J]. , 2022, 29(1): 0-0.
[9]
侯晓东 邓安强 赵刘强 杨洋 罗永春. Co元素对La-Y-Ni系A2B7型储氢合金的微观结构及电化学性能的影响 [J]. , 2021, 28(6): 0-0.
[10]
杨洋 姜婉婷 邓安强 罗永春. 超结构R-Y-Ni系A5B19型(R=Y,La,Pr,Nd,Sm) 储氢合金微观结构和电化学性能的影响 [J]. , 2021, 28(4): 0-0.
[11]
唐松章 张勇 陈鑫洪 舒霞 秦永强 吴玉程. 三元锂离子正极材料LiNi0.6Co0.2Mn0.2O2的控制合成与储能特性研究 [J]. , 2021, 28(05): 0-0.
[12]
尤超 张海民 杨淞婷 罗永春. 气体氢化处理对非晶硅薄膜电化学性能影响的研究 [J]. , 2021, 28(05): 0-0.
[13]
张旭 王利 周淑娟 赵玉园 徐津 闫慧忠. AB3.3型La3-xYxNi9.1Mn0.5Al0.3(x=1.0~2.2)合金储氢性能的研究 [J]. , 2020, 27(5): 0-0.
[14]
郑坤 杨倩 杨洋 罗永春. La0.7Y0.3Ni3.4-xMnxAl0.1(x=0~0.5)储氢合金微观结构和电化学性能的研究 [J]. , 2020, 27(1): 0-0.
[15]
孙艳. 热碱处理对CaCu5型La0.8Ce0.2Ni4.35Mn0.9Ti0.05(V0.3Fe0.4Al0.3)0.3 快凝储氢合金电化学性能的影响 [J]. , 2019, 26(5): 0-0.