YANG Li, MI Zhishan, CHENG Ting, SU Hang, LI Shuangquan, ZHANG Guoxin
The strength of Q690DR steel decreases with the increase of tempering temperature, and the -40 ℃ impact toughness increases with the decrease of quenching temperature, and the increase of tempering temperature between 640-680 ℃. Controlling the heat treatment condition, it can ensure the steel meets engineering application requirements for new high-pressure hydrogen storage vessels. Through the slow strain rate tensile test with electrochemical dynamic hydrogen charging, the elongation rate of Q690DR was reduced by 3%, and the area shrinkage was reduced by 14.1%, compared with the tensile test results under air condition. It showed that Q690DR has a low susceptibility to hydrogen embrittlement under such condition. The hydrogen desorption curves of Q690DR under different heating rates, placement times, and hydrogen charging current densities were tested through thermal desorption sepctrometry TDS. The low-temperature hydrogen desorption activation energy of Q690DR was calculated to be Ea=13.39 kJ/mol, and the high-temperature hydrogen desorption activation energy of Q690DR was calculated to be Eb=117.51 kJ/mol. The hydrogen diffusion coefficient of Q690DR is 9.85×10-7 cm2/s. After hydrogen charging, the diffusible hydrogen in the matrix can escape completely after being holding for more than 12 hours. The hydrogen content charged in the Q690DR matrix increases with the increase of hydrogen charging current density. In addition, with the help of atomic force microscope AFM, we observed the enrichment behavior of hydrogen in the grain boundaries and the second phase after hydrogen charging. Based on the changes in potential difference, we can judge that the grain boundaries are shallow hydrogen traps and the second phase is deep hydrogen traps.