[1] Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 2001,(42), 291-293.[2] YEH J W, CHEN S K, LIN S J et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Advanced Engineering Materials, 2004, 35(8):2533-2536 [3] HUANG P K, YEH J W, SHUN T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Advanced Engineering Materials, 2004, 6(1-2): 74-78.[4] YEH J W, LIN S J, CHIN T S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299-303.[5] HSU C Y, YEH J W, CHEN S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrA0.5Fe alloy with boron addition[J]. Metallurgical and Materials Transactions A, 2004, 35(5):1465-1469.[6] MARIELA F G, GUILLERMO B, Hugo O M. Determination of the transition to the high entropy regime for alloys ofrefractory elements[J]. Journal of Alloys and Compounds, 2012,(534):25-31.[7] WANG W R, WANG W L, WANG S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, (26):44-51.[8] SENKOV O N, SCOTT J M, SENDOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20):6043-6048.[9] TONG C J, CHEN Y L, YEH J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Mctallurgical and materials Trasactions A, 2005, 36(4):881-893.[10] TONG C J, CHEN M R, YEH J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005, 36(5):1263-1271.[11] WU J M, LIN S J, YEH J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum conten[J]. Wear, 2006, 261(5):513-519.[12] TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007, 61(1):1-5.[13] VARALAKSHMI S, KAMARAJ M, MURTY B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys and Compounds, 2008,(460):253-257.[14] VARALASHMI S, RAO G A, KAMARAJ M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying[J]. Journal of Materials Science, 2010, 45(19):5158-5163.[15] LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606):227-230.[16] SHI D M, WEN B, RODERICK M, et al. First-principles studies of Al–Ni intermetallic compounds[J]. Journal of Solid State Chemistry, 2009, (182):2664-2669.[17] YANG Z, SHI D, WEN B, et al. First-principle studies of Ca-X (X=Si, Ge, Sn, Pb) intermetallic compounds[J]. Journal of Solid State Chemistry, 2010, (183):136-143.[18] Wen B, Zhao J, Bai F, et al. First-principle studies of Al-Ru intermetallic compounds[J]. Intermetallics, 2008, 16(2):333-339.[19] ZHOU Y, WEN B, MA Y Q, et al. First-principles studies of Ni–Ta intermetallic compounds[J]. Journal of Solid State Chemistry, 2012, (187):211-218.[20] ZHU A, WANG J, ZHAO D, et al. Native defects and Pr inpurities in orthorhombic CaTiO3 by first-principles calculations[J]. Physica B Condensed Matter, 2011, 406(13): 2697-2702.[21] ZHU A, WANG J, DU Y, et al. Effects of Zn impurities on the electronic properties of Pr doped CaTiO3[J]. Physica B Condensed Matter, 2012, 407(5): 849-854.[22] HUANG G Q, WANG J X. Magnetic behavior of Mn-doped GaN (11-00) film from first-principles calculation[J]. Journal of Applied Physics, 2012, 111(4): 43907-43907.[23] WANG J X, HUANG G Q. Atomic and electronic structure of Mn-doped GaN film from first-principles calculations[J]. Physica Status Solidi, 2010, 9(1):591-592.[24] SEGALL M D, LINDAN J D, PROBERT J J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002,(14):2717-2744.[25] RAMER N J, RAPPE A M. Application of a new virtual crystal approach for the study of disordered perovskites[J]. Journal of Physics and Chemistry of Solid, 2000,(61):315-320.[26] BELLAICHE L, VANDERBILT D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites[J]. Physical Review B, 2000, 61(12):7877-7882.[27] WINKLER B, PICKARD C, MILMAN V. Applicability of a quantum mechanicalvirtual crystal approximation'to study Al/Si-disorder[J]. Chemical Physics Letters, 2002,(362):266-270.[28] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992,(64):1045-1097.[29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.[30] HAMANN D R, SCHLUTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Physical Review Letters, 1979, 43(20):1494-1497.[31] LEUNG T C, CHAN C T, HARMON B N. Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation[J]. Physical Reviews B, 1991,(44): 2923-2927.[32] NYE J F. Physical properties of crystals: Their representation by tensors and matrices[M]. Physical Properties of Crystals. Oxford Oxford University press, 1985.[33] ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry Solids, 1963, 24(7):909-917.[34] LYAPIN A G, BRAZHKIN V V. Correlations between the physical properties of the carbon phases obtained at a high pressure from C60 fullerite[J]. Physics of the Solid State, 2002, 44(3):405-409.[35] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philosophical Magazine Series 7, 2009, 45(367):823-843.