[1]武亮亮, 焦泽辉, 于慧臣.激光选区熔化合金小裂纹扩展行为[J].材料工程, 2023, 51(6):83-92
[2] Kim Y K, Park S H, Yu J H, et al.Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting[J]. Materials Sciences and Engineering A, 2018, 715:33-40.
[3] Jiao Z H, Xu R D, Yu H C.Evaluation on Tensile and Fatigue Crack Growth Performances of Ti6Al4V Alloy Produced by Selective Laser Melting[J]. Procedia Structural Integrity, 2017, 7:124–132
[4] Parry L, Ashcroft I A, Wildman R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15.
[5]李长富, 郑鉴深, 周思雨.电弧增材制造 钛合金的显微组织与力学性能[J].中国有色金属学报, 2022, 32(9):2609-2619
[6] Zhao Z Y, Wang G F, Zhang Y L, et al.Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Multipass Equal Channel Angular Pressing[J]. Journal of Materials Engineering and Performance, 2020, 29:905-913.
[7] Liu J Y, Wang W Y, Huang Y B, et al.Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti-6Al-4V-1.5Mn Fabricated by Powder Metallurgy[J]. Journal of Materials Engineering and Performance, 2019, 28:5458-5465.
[8] Yang Z T, Xu Y Z, Sisson R D, et al.Factors Influencing the Corrosion Behavior of Direct Metal Laser Sintered Ti-6Al-4V for Biomedical Applications[J]. Journal of Materials Engineering and Performance, 2020, 29:3831-3839.
[9]郑立娟, 胡紫涛, 刘绍峰, 等.表面激光熔覆硬质涂层的制备与分析[J].华南理工大学学报, 2023, 51(6):146-152
[10] 王晓亭, 乔波, 张登峰, 等.医用TC4钛合金网篮组织热处理工艺[J]. 材料导报, 36(S02):271-273.
[11] Wang J, Lin X, Wang M, et al.Effects of subtransus heat treatments on microstructure features and mechanical properties of wire and arc additive manufactured Ti-6Al-4V alloy[J]. Materials Sciences and Engineering A, 2020, 776:1-14.
[12]蔡雨升, 吉海宾, 雷家峰, 等.热处理对激光选区熔化钛合金显微组织和力学性能的影响[J].钛工业进展, 2020, 37(1):9-16
[13]肖振楠, 刘婷婷, 廖文和, 等.激光选区熔化成形TC4钛合金热处理后微观组织和力学性能?[J]. 中国激光, 2017, 9:81-89.
[14] Zhang M K, Yang Y Q, Wang D, et al.Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting[J]. Materials Science and Engineering A, 2018, 736:288–297.
[15] Fan Z C, Feng H W.Study on selective laser melting and heat treatment of Ti-6Al-4V alloy[J]. Results in Physics, 2018, 10:660-664.
[16] Wang Q P, Kong J, Liu X K, et al.Effect of Overlapping Remelting on Microstructures and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy[J]. Advanced Engineering Materials, 2022, (24) 2100876.
[17] Haubrich J, Gussone J, Barriobero-Vila P, et al.The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V[J]. Acta Materialia., 2019, 167:136-148
[18] Cao S, Chu R K, Zhou X G, et al.Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 744: 357-363.
[19] Shalnova S A, Kuzminova Y O, Evlashin S A, et al.Effect of recycled powder content on the structure and mechanical properties of Ti-6Al-4V alloy produced by direct energy deposition[J]. Journal of Alloys and Compounds, 2022, 893: 162264.
[20] Jin N, Yan Z Y, Wang Y W, et al.Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials[J]. International Journal Mechanical Sciences, 2021, 190:106042.